2,132 research outputs found
Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson's disease
Abstract Background Changes in blood-brain barrier (BBB) functionality have been implicated in Parkinson's disease. This study aimed to investigate BBB transport of L-DOPA transport in conjunction with its intra-brain conversion, in both control and diseased cerebral hemispheres in the unilateral rat rotenone model of Parkinson's disease. Methods In Lewis rats, at 14 days after unilateral infusion of rotenone into the medial forebrain bundle, L-DOPA was administered intravenously (10, 25 or 50 mg/kg). Serial blood samples and brain striatal microdialysates were analysed for L-DOPA, and the dopamine metabolites DOPAC and HVA. Ex-vivo brain tissue was analyzed for changes in tyrosine hydroxylase staining as a biomarker for Parkinson's disease severity. Data were analysed by population pharmacokinetic analysis (NONMEM) to compare BBB transport of L-DOPA in conjunction with the conversion of L-DOPA into DOPAC and HVA, in control and diseased cerebral hemisphere. Results Plasma pharmacokinetics of L-DOPA could be described by a 3-compartmental model. In rotenone responders (71%), no difference in L-DOPA BBB transport was found between diseased and control cerebral hemisphere. However, in the diseased compared with the control side, basal microdialysate levels of DOPAC and HVA were substantially lower, whereas following L-DOPA administration their elimination rates were higher. Conclusions Parkinson's disease-like pathology, indicated by a huge reduction of tyrosine hydroxylase as well as by substantially reduced levels and higher elimination rates of DOPAC and HVA, does not result in changes in BBB transport of L-DOPA. Taking the results of this study and that of previous ones, it can be concluded that changes in BBB functionality are not a specific characteristic of Parkinson's disease, and cannot account for the decreased benefit of L-DOPA at later stages of Parkinson's disease.</p
Transcatheter Aortic Valve Implantation in Dialysis Patients
Background/Aims: Transcatheter aortic valve implantation (TAVI) has emerged as a new therapeutic option for high-risk patients. However, dialysis patients were excluded from all previous studies. The aim of this study is to compare the outcomes of TAVI for dialysis patients with those for patients with chronic kidney disease (CKD) stages 3 and 4 and to compare TAVI with open surgery in dialysis patients. Methods: Part I: comparison of 10 patients on chronic hemodialysis with 116 patients with non-dialysis-dependent CKD undergoing TAVI. Part II: comparison of transcatheter (n = 15) with open surgical (n = 24) aortic valve replacement in dialysis patients. Results: Part I: dialysis patients were significantly younger (72.3 vs. 82.0 years; p < 0.01). Hospital stay was significantly longer in dialysis patients (21.8 vs. 12.1 days; p = 0.01). Overall 30-day mortality was 3.17%, with no deaths among dialysis patients. Six-month survival rates were similar (log-rank p = 0.935). Part II: patient age was comparable (66.5 vs. 69.5 years; p = 0.42). Patients in the surgical group tended to stay longer in hospital than TAVI patients (29.5 vs. 22.5 days; p = 0.35). Conclusion: TAVI is a safe procedure in patients on chronic hemodialysis. Until new data become available, we find no compelling reason to refuse these patients TAVI. Copyright (C) 2012 S. Karger AG, Base
Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus
The saprotrophic fungus Penicillium griseofulvum was chosen as model organism to study responses to a mixture of hexachlorocyclohexane (HCH) isomers (Ξ±-HCH, Ξ²-HCH, Ξ³-HCH, Ξ΄-HCH) and of potentially toxic metals (vanadium, lead) in solid and liquid media. The P. griseofulvum FBL 500 strain was isolated from polluted soil containing high concentrations of HCH isomers and potentially toxic elements (Pb, V). Experiments were performed in order to analyse the tolerance/resistance of this fungus to xenobiotics, and to shed further light on fungal potential in inorganic and organic biotransformations. The aim was to examine the ecological and bioremedial potential of this fungus verifying the presence of mechanisms that allow it to transform HCH isomers and metals under different, extreme, test conditions. To our knowledge, this work is the first to provide evidence on the biotransformation of HCH mixtures, in combination with toxic metals, by a saprotrophic non-white-rot fungus and on the metabolic synergies involved
Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline
From medical charts to national census, healthcare has traditionally operated
under a paper-based paradigm. However, the past decade has marked a long and
arduous transformation bringing healthcare into the digital age. Ranging from
electronic health records, to digitized imaging and laboratory reports, to
public health datasets, today, healthcare now generates an incredible amount of
digital information. Such a wealth of data presents an exciting opportunity for
integrated machine learning solutions to address problems across multiple
facets of healthcare practice and administration. Unfortunately, the ability to
derive accurate and informative insights requires more than the ability to
execute machine learning models. Rather, a deeper understanding of the data on
which the models are run is imperative for their success. While a significant
effort has been undertaken to develop models able to process the volume of data
obtained during the analysis of millions of digitalized patient records, it is
important to remember that volume represents only one aspect of the data. In
fact, drawing on data from an increasingly diverse set of sources, healthcare
data presents an incredibly complex set of attributes that must be accounted
for throughout the machine learning pipeline. This chapter focuses on
highlighting such challenges, and is broken down into three distinct
components, each representing a phase of the pipeline. We begin with attributes
of the data accounted for during preprocessing, then move to considerations
during model building, and end with challenges to the interpretation of model
output. For each component, we present a discussion around data as it relates
to the healthcare domain and offer insight into the challenges each may impose
on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20
Pages, 1 Figur
Reduction in camera-specific variability in [123I]FP-CIT SPECT outcome measures by image reconstruction optimized for multisite settings: impact on age-dependence of the specific binding ratio in the ENC-DAT database of healthy controls
Purpose Quantitative estimates of dopamine transporter availability, determined with [123I]FP-CIT SPECT, depend on the SPECT equipment, including both hardware and (reconstruction) software, which limits their use in multicentre research and clinical routine. This study tested a dedicated reconstruction algorithm for its ability to reduce camera-specific intersubject variability in [123I]FP-CIT SPECT. The secondary aim was to evaluate binding in whole brain (excluding striatum) as a reference for quantitative analysis. Methods Of 73 healthy subjects from the European Normal Control Database of [123I]FP-CIT recruited at six centres, 70 aged between 20 and 82 years were included. SPECT images were reconstructed using the QSPECT software package which provides fully automated detection of the outer contour of the head, camera-specific correction for scatter and septal penetration by transmission-dependent convolution subtraction, iterative OSEMreconstruction including attenuation correction, and camera-specific Bto kBq/ml^ calibration. LINK and HERMES reconstruction were used for head-to-head comparison. The specific striatal [123I]FP-CIT binding ratio (SBR) was computed using the Southampton method with binding in the whole brain, occipital cortex or cerebellum as the reference. The correlation between SBR and age was used as the primary quality measure. Results The fraction of SBR variability explained by age was highest (1) with QSPECT, independently of the reference region, and (2) with whole brain as the reference, independently of the reconstruction algorithm. Conclusion QSPECT reconstruction appears to be useful for reduction of camera-specific intersubject variability of [123I]FP-CIT SPECT in multisite and single-site multicamera settings. Whole brain excluding striatal binding as the reference provides more stable quantitative estimates than occipital or cerebellar binding
On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm
N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequenceβstructureβdynamicsβfunction Β© 2010 Marcos et al
Congenital Sensorineural Deafness in Australian Stumpy-Tail Cattle Dogs Is an Autosomal Recessive Trait That Maps to CFA10
Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease.A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (pβ=β0.19) and no significant difference was observed in frequencies between the sexes (pβ=β0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (pβ=β0.045). The within family association between red/blue coat colour and deafness was strongly significant (pβ=β0.00036), with red coat colour segregating more frequently with deafness (CORβ=β0.48). The relationship between deafness and coat speckling approached significance (pβ=β0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 -log10 p-valueβ=β3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (nβ=β93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10
Importin-13 genetic variation is associated with improved airway responsiveness in childhood asthma
<p>Abstract</p> <p>Background</p> <p>Glucocorticoid function is dependent on efficient translocation of the glucocorticoid receptor (GR) from the cytoplasm to the nucleus of cells. Importin-13 (IPO13) is a nuclear transport receptor that mediates nuclear entry of GR. In airway epithelial cells, inhibition of IPO13 expression prevents nuclear entry of GR and abrogates anti-inflammatory effects of glucocorticoids. Impaired nuclear entry of GR has been documented in steroid-non-responsive asthmatics. We hypothesize that common IPO13 genetic variation influences the anti-inflammatory effects of inhaled corticosteroids for the treatment of asthma, as measured by change in methacholine airway hyperresponsiveness (AHR-PC<sub>20</sub>).</p> <p>Methods</p> <p>10 polymorphisms were evaluated in 654 children with mild-to-moderate asthma participating in the Childhood Asthma Management Program (CAMP), a clinical trial of inhaled anti-inflammatory medications (budesonide and nedocromil). Population-based association tests with repeated measures of PC<sub>20 </sub>were performed using mixed models and confirmed using family-based tests of association.</p> <p>Results</p> <p>Among participants randomized to placebo or nedocromil, IPO13 polymorphisms were associated with improved PC<sub>20 </sub>(i.e. less AHR), with subjects harboring minor alleles demonstrating an average 1.51β2.17 fold increase in mean PC<sub>20 </sub>at 8-months post-randomization that persisted over four years of observation (p = 0.01β0.005). This improvement was similar to that among children treated with long-term inhaled corticosteroids. There was no additional improvement in PC<sub>20 </sub>by IPO13 variants among children treated with inhaled corticosteroids.</p> <p>Conclusion</p> <p>IPO13 variation is associated with improved AHR in asthmatic children. The degree of this improvement is similar to that observed with long-term inhaled corticosteroid treatment, suggesting that IPO13 variation may improve nuclear bioavailability of endogenous glucocorticoids.</p
In Silico Elucidation of the Recognition Dynamics of Ubiquitin
Elucidation of the mechanism of biomacromolecular recognition events has been a topic of intense interest over the past century. The inherent dynamic nature of both protein and ligand molecules along with the continuous reshaping of the energy landscape during the binding process renders it difficult to characterize this process at atomic detail. Here, we investigate the recognition dynamics of ubiquitin via microsecond all-atom molecular dynamics simulation providing both thermodynamic and kinetic information. The high-level of consistency found with respect to experimental NMR data lends support to the accuracy of the in silico representation of the conformational substates and their interconversions of free ubiquitin. Using an energy-based reweighting approach, the statistical distribution of conformational states of ubiquitin is monitored as a function of the distance between ubiquitin and its binding partner Hrs-UIM. It is found that extensive and dense sampling of conformational space afforded by the Β΅s MD trajectory is essential for the elucidation of the binding mechanism as is Boltzmann sampling, overcoming inherent limitations of sparsely sampled empirical ensembles. The results reveal a population redistribution mechanism that takes effect when the ligand is at intermediate range of 1β2 nm from ubiquitin. This mechanism, which may be depicted as a superposition of the conformational selection and induced fit mechanisms, also applies to other binding partners of ubiquitin, such as the GGA3 GAT domain
Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes
Copyright: Β© 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514
- β¦