3,734 research outputs found

    Altered serological and cellular reactivity to H-2 antigens after target cell infection with vaccinia virus

    Get PDF
    MICE generate cytotoxic T lymphocytes (CTL) which are able to lyse virus infected target cells in vitro after infection with lymphocytic choriomeningitis virus (LCMV) and pox-viruses1−3. CTL kill syngeneic and semiallogenic infected cells but not allogenic infected targets. Target cell lysis in these systems seems to be restricted by H-2 antigens, especially by the K or D end of the major histocompatibility complex (MHC). In experiments where virus specific sensitised lymphocytes kill virus infected allogenic target cells4 the effector lymphocytes have not been characterised exactly. Recent investigations suggest that the active cell in this assay, at least in the measles infection, is a non-thymus derived cell (H. Kreth, personal communication). An H-2 restriction of cell mediated cytolysis (CMC) to trinitrophenol (TNP)-modified lymphocytes has also been described5. Zinkernagel and Doherty6 postulated that the CTL is directed against syngeneic H-2 antigens and viral antigens and they suggested an alteration of H-2 induced by the LCMV infection. Earlier7 we found a close topological relationship between H-2 antigens and the target antigen(s) responsible for CMC in the vaccinia system. Here we report experiments which were carried out to prove alteration of H-2 after infection of L-929 fibroblasts with vaccinia virus

    Sensory Measurements: Coordination and Standardization

    Get PDF
    Do sensory measurements deserve the label of “measurement”? We argue that they do. They fit with an epistemological view of measurement held in current philosophy of science, and they face the same kinds of epistemological challenges as physical measurements do: the problem of coordination and the problem of standardization. These problems are addressed through the process of “epistemic iteration,” for all measurements. We also argue for distinguishing the problem of standardization from the problem of coordination. To exemplify our claims, we draw on olfactory performance tests, especially studies linking olfactory decline to neurodegenerative disorders

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    A family history of breast cancer will not predict female early onset breast cancer in a population-based setting

    Get PDF
    ABSTRACT: BACKGROUND: An increased risk of breast cancer for relatives of breast cancer patients has been demonstrated in many studies, and having a relative diagnosed with breast cancer at an early age is an indication for breast cancer screening. This indication has been derived from estimates based on data from cancer-prone families or from BRCA1/2 mutation families, and might be biased because BRCA1/2 mutations explain only a small proportion of the familial clustering of breast cancer. The aim of the current study was to determine the predictive value of a family history of cancer with regard to early onset of female breast cancer in a population based setting. METHODS: An unselected sample of 1,987 women with and without breast cancer was studied with regard to the age of diagnosis of breast cancer. RESULTS: The risk of early-onset breast cancer was increased when there were: (1) at least 2 cases of female breast cancer in first-degree relatives (yes/no; HR at age 30: 3.09; 95% CI: 128-7.44), (2) at least 2 cases of female breast cancer in first or second-degree relatives under the age of 50 (yes/no; HR at age 30: 3.36; 95% CI: 1.12-10.08), (3) at least 1 case of female breast cancer under the age of 40 in a first- or second-degree relative (yes/no; HR at age 30: 2.06; 95% CI: 0.83-5.12) and (4) any case of bilateral breast cancer (yes/no; HR at age 30: 3.47; 95%: 1.33-9.05). The positive predictive value of having 2 or more of these characteristics was 13% for breast cancer before the age of 70, 11% for breast cancer before the age of 50, and 1% for breast cancer before the age of 30. CONCLUSION: Applying family history related criteria in an unselected population could result in the screening of many women who will not develop breast cancer at an early age

    Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection

    Get PDF
    Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges
    corecore