1,788 research outputs found

    Converting Endangered Species Categories to Probabilities of Extinction for Phylogenetic Conservation Prioritization

    Get PDF
    Categories of imperilment like the global IUCN Red List have been transformed to probabilities of extinction and used to rank species by the amount of imperiled evolutionary history they represent (e.g. by the Edge of Existence programme). We investigate the stability of such lists when ranks are converted to probabilities of extinction under different scenarios.Using a simple example and computer simulation, we show that preserving the categories when converting such list designations to probabilities of extinction does not guarantee the stability of the resulting lists.Care must be taken when choosing a suitable transformation, especially if conservation dollars are allocated to species in a ranked fashion. We advocate routine sensitivity analyses

    The pathology of familial breast cancer: The pre-BRCA1/BRCA2 era - historical perspectives

    Get PDF
    A proportion of breast carcinomas develop as a result of a genetic predispostion to the disease. Prior to cloning of the BRCA1 and BRCA2 genes a limited number of studies were carried out to identify specific histopathological characteristics of hereditary breast cancer. These studies are the subject of this review. The main finding was the association of the (atypical) medullary type of breast cancer with a family history; the most important caveat being that medullary breast cancer is found more frequently in young patients. In view of the frequent bilateral occurrence of lobular cancer, this histologic type is also likely to be associated with a predisposing genetic defect. Future investigations will have to test this hypothesis. In addition to mutations in the BRCA1 and BRCA2 genes, there are as yet unidentified genetic defects predisposing to breast cancer development, and histopathology may well help in identifying these genes in the future

    The cometary composition of a protoplanetary disk as revealed by complex cyanides

    Full text link
    Observations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the same holds for more complex organic molecules outside of the Solar Nebula, since recent observations show a dramatic change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and HC3N) in the protoplanetary disk around the young star MWC 480. We find abundance ratios of these N-bearing organics in the gas-phase similar to comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of the Solar Nebula was not unique.Comment: Definitive version of the manuscript is published in Nature, 520, 7546, 198, 2015. This is the author's versio

    The Universal One-Loop Effective Action

    Full text link
    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version accepted for publication in JHE

    The Role of Bile in the Regulation of Exocrine Pancreatic Secretion

    Get PDF
    As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap

    Problematic Instagram use: the role of perceived feeling of presence and escapism

    Get PDF
    The use of social networking sites is becoming increasingly popular. Although there are many studies investigating the problematic use of social networking sites such as Facebook, little is known about problematic Instagram use (PIU) and factors related to it. The present study developed a complex model in order to examine the mediating role of perceived feeling of presence (i.e., social, spatial, and co-presence) and escapism between using different Instagram features and PIU. A total of 333 Instagram users from a high school and a state university, aged between 14 and 23 years (Mage = 17.74 years, SD = 2.37, 61% female), completed a "paper-and-pencil" questionnaire comprising measures of social presence, spatial presence, co-presence, Instagram escapism, and PIU. In addition, frequency of use of five different Instagram features (i.e., watching live streams; watching videos; looking at posted photographs; liking, commenting on others' posts; and getting likes and comments from others) were assessed using a 7-point Likert scale. Analysis indicated that watching live streams was indirectly associated with PIU via escapism, spatial presence, and co-presence. Leaving likes and comments on others' posts was both directly and indirectly associated with PIU via co-presence and escapism. Escapism mediated the relationships between social and spatial presence and co-presence and PIU. The findings of the present study appear to indicate that a minority of individuals use Instagram problematically and that problematic Instagram use is associated with the frequency of watching live streams, liking, and commenting on others’ posts on Instagram, being able to feel a higher sense of presence using Instagram, and using Instagram as an escape from reality

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
    corecore