157 research outputs found

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++

    Get PDF
    Computational efforts to identify functional elements within genomes leverage comparative sequence information by looking for regions that exhibit evidence of selective constraint. One way of detecting constrained elements is to follow a bottom-up approach by computing constraint scores for individual positions of a multiple alignment and then defining constrained elements as segments of contiguous, highly scoring nucleotide positions. Here we present GERP++, a new tool that uses maximum likelihood evolutionary rate estimation for position-specific scoring and, in contrast to previous bottom-up methods, a novel dynamic programming approach to subsequently define constrained elements. GERP++ evaluates a richer set of candidate element breakpoints and ranks them based on statistical significance, eliminating the need for biased heuristic extension techniques. Using GERP++ we identify over 1.3 million constrained elements spanning over 7% of the human genome. We predict a higher fraction than earlier estimates largely due to the annotation of longer constrained elements, which improves one to one correspondence between predicted elements with known functional sequences. GERP++ is an efficient and effective tool to provide both nucleotide- and element-level constraint scores within deep multiple sequence alignments

    Measuring health-related quality of life in population-based studies of coronary heart disease: comparing six generic indexes and a disease-specific proxy score

    Get PDF
    To compare HRQoL differences with CHD in generic indexes and a proxy CVD-specific score in a nationally representative sample of U.S. adults. The National Health Measurement Study, a cross-sectional random-digit-dialed telephone survey of adults aged 35–89, administered the EQ-5D, QWB-SA, HUI2, HUI3, SF-36v2™ (yielding PCS, MCS, and SF-6D), and HALex. Analyses compared 3,350 without CHD (group 1), 265 with CHD not taking chest pain medication (group 2), and 218 with CHD currently taking chest pain medication (group 3), with and without adjustment for demographic variables and comorbidities. Data on 154 patients from heart failure clinics were used to construct a proxy score utilizing generic items probing CVD symptoms. Mean scores differed between CHD groups for all indexes with and without adjustment (P < 0.0001 for all except MCS P = 0.018). Unadjusted group 3 versus 1 differences were about three times larger than for group 2 versus 1. Standardized differences for the proxy score were similar to those for generic indexes, and were about 1.0 for all except MCS for group 3 versus 1. Generic indexes capture differences in HRQoL in population-based studies of CHD similarly to a score constructed from questions probing CVD-specific symptoms

    Statistical Analysis of Molecular Signal Recording

    Get PDF
    A molecular device that records time-varying signals would enable new approaches in neuroscience. We have recently proposed such a device, termed a “molecular ticker tape”, in which an engineered DNA polymerase (DNAP) writes time-varying signals into DNA in the form of nucleotide misincorporation patterns. Here, we define a theoretical framework quantifying the expected capabilities of molecular ticker tapes as a function of experimental parameters. We present a decoding algorithm for estimating time-dependent input signals, and DNAP kinetic parameters, directly from misincorporation rates as determined by sequencing. We explore the requirements for accurate signal decoding, particularly the constraints on (1) the polymerase biochemical parameters, and (2) the amplitude, temporal resolution, and duration of the time-varying input signals. Our results suggest that molecular recording devices with kinetic properties similar to natural polymerases could be used to perform experiments in which neural activity is compared across several experimental conditions, and that devices engineered by combining favorable biochemical properties from multiple known polymerases could potentially measure faster phenomena such as slow synchronization of neuronal oscillations. Sophisticated engineering of DNAPs is likely required to achieve molecular recording of neuronal activity with single-spike temporal resolution over experimentally relevant timescales.United States. Defense Advanced Research Projects Agency. Living Foundries ProgramGoogle (Firm)New York Stem Cell Foundation. Robertson Neuroscience Investigator AwardNational Institutes of Health (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Transformative R01 1R01GM104948)National Institutes of Health (U.S.) (Single Cell Grant 1 R01 EY023173)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (CAREER Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS1042134)Paul G. Allen Family Foundation (Distinguished Investigator in Neuroscience Award

    The Application of NCaRBS to the Trendelenburg Test and Total Hip Arthroplasty Outcome

    Get PDF
    This paper compares the frontal plane hip func- tion of subject’s known to have had hip arthroplasty via either the lateral (LA) or posterior (PA) surgical approaches and a group of subjects associated with no pathology (NP). This is investigated through the Trendelenburg test using 3D motion analysis and classification. Here, a recent develop- ment on the Classification and Ranking Belief Simplex (CaRBS) technique, able to undertake n-state classification, so termed NCaRBS is employed. The relationship between post-operative hip function measured during a Trendelen- burg Test using three patient characteristics (pelvic obliquity, frontal plane hip moment and frontal plane hip power) of LA, PA and NP subjects are modelled together. Using these characteristics, the classification accuracy was 93.75% for NP, 57.14% for LA, 38.46% for PA. There was a clear distinction between NP and post-surgical function. 3/6 LA subjects and 6/8 PA subjects were misclassified as having NP function, implying that greater function is restored following the PA to surgery. NCaRBS achieved a higher accuracy (65.116%) than through a linear discriminant analysis (48.837%). A Neural Network with two-nodes achieved the same accuracy (65.116%) and as expected was further improved with three-nodes (69.767%). A valuable benefit to the employment of the NCaRBS technique is the graphical exposition of the contribution of patient characteristics to the classification analysis

    Hierarchical Models in the Brain

    Get PDF
    This paper describes a general model that subsumes many parametric models for continuous data. The model comprises hidden layers of state-space or dynamic causal models, arranged so that the output of one provides input to another. The ensuing hierarchy furnishes a model for many types of data, of arbitrary complexity. Special cases range from the general linear model for static data to generalised convolution models, with system noise, for nonlinear time-series analysis. Crucially, all of these models can be inverted using exactly the same scheme, namely, dynamic expectation maximization. This means that a single model and optimisation scheme can be used to invert a wide range of models. We present the model and a brief review of its inversion to disclose the relationships among, apparently, diverse generative models of empirical data. We then show that this inversion can be formulated as a simple neural network and may provide a useful metaphor for inference and learning in the brain

    Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content

    Get PDF
    Following the domestication of maize over the past ∼10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop

    BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals

    Get PDF
    Numerous studies have indicated a link between the presence of polymorphism in brain-derived neurotrophic factor (BDNF) and cognitive and affective disorders. However, only a few have studied these effects longitudinally along with structural changes in the brain. This study was carried out to investigate whether valine-to-methionine substitution at position 66 (val66met) of pro-BDNF could be linked to alterations in the rate of decline in skilled task performance and structural changes in hippocampal volume. Participants consisted of 144 healthy Caucasian pilots (aged 40–69 years) who completed a minimum of 3 consecutive annual visits. Standardized flight simulator score (SFSS) was measured as a reliable and quantifiable indicator for skilled task performance. In addition, a subset of these individuals was assessed for hippocampal volume alterations using magnetic resonance imaging. We found that val66met substitution in BDNF correlated longitudinally with the rate of decline in SFSS. Structurally, age-dependent hippocampal volume changes were also significantly altered by this substitution. Our study suggests that val66met polymorphism in BDNF can be linked to the rate of decline in skilled task performance. Furthermore, this polymorphism could be used as a predictor of the effects of age on the structure of the hippocampus in healthy individuals. Such results have implications for understanding possible disabilities in older adults performing skilled tasks who are at a higher risk for cognitive and affective disorders
    corecore