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Abstract

Background: The Illumina Infinium HumanMethylation450 BeadChip is an array-based technology for analysing DNA
methylation at approximately 475,000 differentially methylated cytosines across the human genome. Hitherto, the array
has been used for case-control studies, where sample numbers can be sufficient to yield statistically robust data on a
genome-wide basis. We recently reported an informatic pipeline capable of yielding statistically and biologically
significant results using only five cases, which expanded the use of this technology to rare disease studies. However,
the clinical application of these technologies requires the ability to perform robust analysis of individual patients.

Results: Here we report a novel informatic approach for methylation array analysis of single samples, using the
Crawford-Howell t-test. We tested our approach on patients with ultra-rare imprinting disorders with aberrant DNA
methylation at multiple locations across the genome, which was previously detected by targeted testing. However,
array analysis outperformed targeted assays in three ways: it detected loci not normally analysed by targeted testing,
detected methylation changes too subtle to detect by the targeted testing and reported broad and consistent
methylation changes across genetic loci not captured by point testing.

Conclusions: This method has potential clinical utility for human disorders where DNA methylation change may be a
biomarker of disease.
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Background
Epigenetic modulation of gene expression is respon-
sible for tissue specific and temporal changes across
growth and development. The most widely studied of
these epigenetic modifications is DNA methylation of
5-methylcytosine at CpG dinucleotides. Aberrations of
DNA methylation are associated with a range of diseases,
including imprinting disorders and cancer [1]. Recent ad-
vances in technologies have made it possible to study the
epigenetic changes associated with these diseases using ro-
bust genome-wide technologies including the Infinium
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HumanMethylation450 BeadChip (henceforward denoted
the 450 k array; www.Illumina.com). The 450 k array mea-
sures the intensity of fluorescent signal from methylated
and unmethylated probes at approximately 475,000 CpG
dinucleotides across the genome, including CpG islands,
promoters, gene bodies, intergenic regions and the major-
ity of imprinted loci. These intensities are then used to
calculate DNA methylation levels, with advantageous
throughput, cost, coverage and technical consistency.
To date, many studies, utilising the 450 k array, have

used case-control designs [2-6]. The limitation to the
majority of these studies is that the bioinformatic ana-
lysis used requires a large number of cases and controls
to obtain statistically significant results. Recently, we de-
veloped a novel informatic pipeline yielding statistically
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and biologically significant results using small case num-
ber analysis (case = 5) [7], which expanded the use of
this technology to rare disease studies. However, the
clinical application of these technologies requires the
ability to perform robust analysis of individual patients.
Humans harbour approximately 100 known imprinted

genes, characterised by the epigenetic control of gene ex-
pression, often through parent-of-origin-specific methyla-
tion that is applied in the germ line and conserved
through subsequent development in all tissues. As yet, dis-
ruption of the methylation state at eight imprinted loci
has been associated with imprinting disorders (Beckwith-
Wiedemann syndrome (BWS; MIM #130659), Silver-
Russell syndrome (SRS; MIM #180860), transient neonatal
diabetes mellitus (TNDM; MIM #601410), Prader-Willi
syndrome (PWS; MIM #176270), Angelman syndrome
(AS; MIM #105830), matUPD14-like (Temple syndrome)
and patUPD14-like (Wang-Kagami) syndromes and pseu-
dohypoparathyroidism 1B (PHP-1B; MIM #103580)). Rare
patients with multi-locus methylation disorders (MLMD)
[8-11] form a uniquely informative group of samples that
can be used to develop a sensitive and specific single sam-
ple 450 k array bioinformatic pipeline. Informatically,
there are a number of approaches to single case analysis.
A single normalised sample can be compared against a
large sample group standardised in the same way [12].
However, collecting a large normative sample can be both
time-consuming and challenging [13]. Another approach
is to compare one or more tests to the performance of the
same individuals by chi-square tests. However, the signifi-
cant raw difference between different performances (or
scores) can be diminished by comparison against control
performance (or score) and vice versa. Alternatively, a sin-
gle sample’s performance (or score) can be compared to
that of a matched control group. Whereas the standar-
dised method requires a large number of samples and
intra-individual comparisons require assessment of two or
more independent variables, the single case-control method
requires only a moderate number of controls [12].
In single case-control analysis, the most common means

of detecting significant differences is to convert the case’s
score to a z-score using the control sample mean and
standard deviation and referring the score to a table of
areas under the normal curve [14]. However, this might
not accurately estimate the parameters if the control sam-
ple is large enough to assume that the mean and the
standard deviation are used as population parameter ra-
ther than sample statistics [15]. In many cases, the num-
ber of controls can be quite small (even smaller than 10).
Therefore, it is logical to use a t-test method using the
t-distribution. A number of studies used one-sample
t-tests in their single case-control studies, and to date,
several studies used Crawford and Howell’s t-test methods
as mentioned in [16]. The Weisberg t-test, for identifying
outliers, is also capable of single sample analysis. The dif-
ferent t-tests will be briefly described in the following
section.
However, all of these studies involved neuropsycho-

logical rather than 450 k array data. Here we demonstrate
the effectiveness of a single case-control method for ana-
lysing 450 k array data from patients with multi-locus and
single-locus imprinting disorders. Using 450 k array data
from patients with known regions and severity of DNA hy-
pomethylation, we were able to optimise our informatic
approach: firstly, by comparison of various t-test methods
and secondly, by varying the control group size to identify
the smallest control size required to detect biologically and
statistically significant changes in methylation at known
regions of hypomethylation specific to each patient.

Results
As mentioned earlier, we developed a pipeline for small
sample size (ncases = 5) against large control groups, using
patients with TND-MLMD and BWS-MLMD and broadly
similar patterns of methylation change as determined by
targeted testing. The pipeline applied a linear model as the
statistical method, and CpGs were selected where they
were hypomethylated compared with controls, with an ad-
justed P value < 1.33 × 10− 7 and M values between −1 and
+1 (equivalent to 0.26 ≤ β ≤ 0.7) in normal controls, to en-
rich for the intermediate methylation consistent with the
hemimethylation of genomic imprinting. We focused our
attention on genes or DNA regions containing at mini-
mum two CpGs within 2000 nucleotides. Using this ap-
proach, we detected 21 hypomethylated regions in the
TND-MLMD and 34 regions in BWS-MLMD pooled
samples [7], including regions of hypomethylation that
were previously unknown and consistent with genomic
imprinting. Targeted testing showed that some of these re-
gions were not hypomethylated in all the samples. There-
fore, though analysis of small case numbers vs. large
control numbers could identify differential methylation
robustly, it failed to identify patient-specific regions with-
out targeted follow-up testing.
We applied single sample t-tests (Crawford-Howell,

Weisberg and one-sample t-tests) instead of linear regres-
sion as the statistical method and modified the filtration
criteria: hypomethylated DNA sequences with characteris-
tics consistent with imprinting were selected as those con-
taining a minimum of three consecutive CpGs within
2000 nucleotides with M value between −1 and +1 in nor-
mal controls and P value <0.05.

Selection of the CH t-test after comparative evaluation of
t-test performance
Here we compared three types of t-tests (Crawford-
Howell, one-sample and Weisberg t-tests) for their abil-
ity to identify known regions of differential methylation
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by single sample analysis while predicting less variability
using a randomly selected control group size of 50
which was batch-matched, that is derived from the same
batch of 450 k analyses as the patient DNA.
Using simulated data, it has already been shown that the

Crawford-Howell t-test (denoted as CH t-test henceforth)
works better than the one-sample t-test irrespective of the
number of controls and the one-sample t-test has a high
Type I error rate [16]. It is true that, in case of single sam-
ple t-test, using single value against a control group is
highly unorthodox as this type of t-test is used to test
whether a sample mean differs significantly from a known
population mean. However, it has been used in a number
of studies [17-19] in this manner. The CH and Weisberg
t-tests are more efficient in identifying significant hypome-
thylation than the one-sample t-test. For example, in
TND-MLMD patients both CH and Weisberg t-tests were
able to identify a number of sites including the cardinal
disease locus PLAGL1 in all patients. Though both the
CH and Weisberg t-tests showed similar results for several
loci, the Weisberg test generated slightly less significant
P values (differences in P values ranging from 10−9 to
10−15 at the PLAGL1 locus). The difference in P values
is attributed to the difference in minimum P value
threshold of CH t-test and Weisberg t-tests. Conversely,
the one-sample t-test did identify significant sites along
with many more false positives. The results of different
t-tests examining PLAGL1 in TND-MLMD 5 are pre-
sented in Figure 1 and Additional file 1: Table S7. The
point estimates (estimated percentage of the control
population that would be expected to obtain lower score
than the case) for both CH and Weisberg t-tests are well
within the 95% confidence interval of the noncentrality
parameter derived from the case scores. However, in case
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Figure 1 The performance of three t-tests (one-sample, Weisberg and Craw
x-axis denotes the genomic location of PLAGL1 on chromosome 6. The y-a
would be expected to obtain lower score than the case (point estimate), w
Weisberg (WB, green line with green square markers) and Crawford-Howell (C
of the point estimates from the noncentrality parameter from a noncentral t-d
of one-sample t-test, there are a number of instances in
which the point estimates do not fit in to that confidence
interval, showing that one-sample t-test predicted large
numbers of insignificant hypomethylation signals as sig-
nificant. Likewise, the CH and Weisberg t-tests produced
similar results for BWS-MLMD patients, identifying sev-
eral regions of differential methylation, including the car-
dinal disease locus KCNQ1OT1, whereas the one-sample
t-test again detected many false positive sites as significant
differential methylation. The results of different t-tests
around KCNQ1OT1 in BWS-MLMD 1 are presented in
Additional file 1: Figure S1 and Additional file 1: Table S8,
which shows the same type of outcome. The same sam-
ples with varying control size (5, 10, 20, 30, 40 and 50)
showed the same trend in the efficiency of the t-tests.
Therefore, both CH and Weisberg t-tests are capable

of identifying regions of differential methylation with low
false positive rate in single sample case-controls analysis.
However, the CH t-test has the advantage of calculating
effect size for single sample case-control studies, which is
absent from the Weisberg t-test; therefore, we selected
CH t-test for further analysis due to this and the more sig-
nificant P values generated, and all further tests described
here were performed using this method.

Detection of cardinal locations in MLMD patients using
the single sample analysis
Previous targeted testing of our samples identified sev-
eral known regions of biologically significant differential
methylation in addition to the cardinal disease loci.
However, the magnitude of differential methylation var-
ied at different imprinted loci, for example all TND
cases have complete hypomethylation at the PLAGL1
locus, whereas individuals with BWS showed varying
144385771 144386275 144387124
(hg19: chr6)

CH t-test
WB t-test
OS t-test

ford-Howell t-tests) around the PLAGL1 region in TND-MLMD 1. The
xis represents the estimated percentage of the control population that
hich is calculated according to the one-sample (OS, red crossed line),
H, blue line) methods. The blue shade represents 95% confidence interval
istribution.
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levels of hypomethylation at KCNQ1OT1 (see Figure 2).
These data provided us with valuable information on the
inter-individual differences of both the severity of differ-
ential methylation and the regions affected.
Analysis of TND-MLMD and BWS-MLMD patients’

450 k data, using the single sample analysis pipeline and
a randomly selected batch-matched control group of size
50, identified several regions of differential methylation
in a number of cases. These regions are largely dependent
on the magnitude of the differential methylation as pre-
dicted by targeted testing. In all patients, the cardinal dis-
ease loci were identified: that is, PLAGL1 in TND-MLMD
patients and KCNQ1OT1 in BWS patients. Figure 3 (with
Additional file 1 Table S9) illustrates the identification of
hypomethylation at KCNQ1OT1 in BWS-MLMD 4 (data
for other BWS-MLMD patients are in Additional file 1:
Figure S2 and for TND-MLMD cases in Additional file 1:
Figure S3).

Detection of methylation disturbance at multiple
locations using single sample analysis
Apart from the cardinal loci, the pipeline also detected
additional significantly hypomethylated loci, including
Figure 2 Comparison of detection of methylation changes between targe
headers indicate the loci tested and their genomic locations. Rows denote
individual patients, grouped by their presenting disorder. The DNA methyla
specific PCR (msPCR) in TT. A methylation ratio of 1 is equivalent to hemizy
two-fold excess of unmethylated over methylated template; ‘Total’ indicate
reflects the severity of hypomethylation. A dash indicates no data, normally
450 k, the P values have been determined by Fisher’s combined P value m
methylation changes were detected at that region and 0 is yielded while t
syndrome-multi-locus methylation disorders; TND-MLMD, transient neonata
but not limited to those identified by targeted testing. Hy-
pomethylation was detected at well-established imprinted
loci including SNRPN, GNAS, MEST and GRB10, more re-
cently identified loci including ZNF331, FAM50B, HM13,
ERLIN2, LOC100130522, WRB and NHP2L1, and previ-
ously uninvestigated regions (such as SVOPL and MAFG;
Additional file 1: Table S1).
To assess the sensitivity of the pipeline, we focused on

three imprinted loci: SNRPN (chr15: 25068738–25201732),
GNAS (chr20:57,380,000-57,400,000) and WRB (chr21:
40752116–40752116). Significant hypomethylation at
SNRPN was confirmed in TND-MLMD 5 and BWS-
MLMD 4 by targeted testing (Figure 2) which is also
detected by our pipeline (Figure 4, Additional file 1:
Table S10). Moreover, TND-MLMD 2 was also found to
show differential methylation in some SNRPN CpGs outside
the differentially methylated region (DMR) - this was not
detected by msPCR analysis (Additional file 1: Figure S4),
and it shows a slightly different methylation pattern than
that of TND-MLMD 5. Likewise, the mosaic hypomethy-
lation of WRB detected in three TND-MLMD samples
was confirmed by targeted testing methylome analysis
(TND-MLMDs 2, 3, 4 and 5: Additional file 1: Figure S5).
ted DNA methylation testing and single sample analysis. Column
targeted testing (TT) and single sample analysis (450 k) results of
tion at differentially methylated loci was estimated by methylation-
gous methylation, as seen in normal controls; a ratio of 2 indicates
s no detectable methylated sequences. The intensity of blue shading
because insufficient DNA prevented completion of all testing. For

ethod for independent tests. The ∞ symbol means no significant
he P value is too small (<10−350). BWS-MLMD, Beckwith-Wiedemann
l diabetes-multi-locus methylation disorders.



Figure 3 Identification of hypomethylation at the cardinal loci in an MLMD sample. Upper panel: Genomic location from the UCSC genome
browser, illustrating the KCNQ1 gene and the imprinting control region. Lower panel: graphical presentation of 450 k DNA methylation data
across the KCNQ1 gene in BWS-MLMD 4. The x-axis corresponds to the genomic location as illustrated in the upper panel. The primary y-axis (left)
represents the CH P value (solid blue line); the secondary y-axis (right) represents the difference in M value between BWS-MLMD 4 and controls
(dashed black line). BWS-MLMD, Beckwith-Wiedemann syndrome-multi-locus methylation disorders.
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The pipeline detected significant methylation changes
across the GNAS locus in three out of five BWS-MLMD
and one out of five TND-MLMD patients. Figure 5 (with
Additional file 1: Table S11) illustrates the GNAS locus
in BWS-MLMD 4 and TND-MLMD 2, showing that
methylation changes are detected at consecutive probes
across the locus, which is more informative than the
point determinations of targeted testing.

Use of the single sample approach on ‘simple’ patients
In addition to the samples with MLMD, we analysed
samples from patients with ‘simple’ imprinting disorders
Figure 4 Identification of hypomethylation at the SNRPN locus in MLMD sa
browser, illustrating the SNRPN gene and the imprinting control region. Lo
across the SNRPN gene in BWS-MLMD 4 (red) and TND-MLMD 5 (blue). The
panel. The primary y-axis (left) represents the CH P value (solid lines); the se
the cases and controls (dashed lines). BWS-MLMD, Beckwith-Wiedemann sy
neonatal diabetes-multi-locus methylation disorders.
where targeted testing indicated that hypomethylation was
restricted to the cardinal disease locus. In all four TND
samples, the cardinal region of differential methylation
was PLAGL1 as expected. For two samples, TND-SIMPLE
2 and 3, hypomethylation of five and one additional
imprinted regions was identified respectively, characteris-
tic of MLMDs (Additional file 1: Table S2). Additionally,
one of the samples (TND-SIMPLE 2) had many novel re-
gions of hypomethylation not previously associated with
imprinted loci. One of these, GLP2R was also observed in
TND-SIMPLE 3 as the only hypomethylated locus not as-
sociated with a known imprinting region. Likewise, all the
mples. Upper panel: Genomic location from the UCSC genome
wer panel: graphical presentation of 450 k DNA methylation data
x-axis corresponds to the genomic location as illustrated in the upper
condary y-axis (right) represents the difference in M value between
ndrome-multi-locus methylation disorders; TND-MLMD, transient



Figure 5 Identification of hypomethylation at the GNAS locus in MLMD samples. Upper panel: Genomic location from the UCSC genome
browser, illustrating the GNAS locus and three regions of high CpG density harbouring differentially methylated regions. Lower panel: graphical
presentation of 450 k DNA methylation data across the GNAS locus TND-MLMD 2 (red) and BWS-MLMD 4 (blue). The x-axis corresponds to the
genomic location as illustrated in the upper panel. The primary y-axis (left) represents the CH P value (solid lines); the secondary y-axis (right)
represents the difference in M values between cases and controls (dashed lines). Note the hypomethylation clearly visible at three locations in
TND-MLMD 2, coinciding with the more subtle hypomethylation detectable in BWS-MLMD 4 primarily through significance of P value. BWS-MLMD,
Beckwith-Wiedemann syndrome-multi-locus methylation disorders; TND-MLMD, transient neonatal diabetes-multi-locus methylation disorders.

Rezwan et al. Clinical Epigenetics  (2015) 7:48 Page 6 of 11
BWS samples were hypomethylated at the cardinal locus
KCNQ1OT1, but one sample (BWS-SIMPLE3) showed
hypomethylation at multiple imprinting loci, characteristic
of MLMD. This shows that 450 k-based analyses can de-
tect methylation changes that may go undetected by the
point determinations of targeted testing. (Additional file 1:
Table S3).

Applying the single sample analysis to biological
replicates
To assess whether the CH t-test detected false positives
from control group variations, we processed one sample
with two completely different batch-matched groups of
50 controls. The two tests respectively selected 205 and
184 hypomethylated CpG sites, with 170 sites in 12 re-
gions in common (see Additional file 1: Table S4).

Determining the minimum number of controls
Significance test
To assess the effect of control group size on detection of
known regions of differential methylation, BWS-MLMD
samples were analysed with varying numbers of controls
(5, 10, 20, 30, 40 or 50) using the CH t-test. With 5 con-
trols, no cardinal sites for BWS-MLMDs were detected.
When control group size = 10, numerous regions of hypo-
methylation were identified (KCNQ1, PLAGL1, DIRAS3,
MEST, GNAS, PEG3, NHP2L1, and PPIEL) though not
WRB. With 20 controls all known regions of differential
methylation were detected, the use of 30, 40 or 50 controls
added little sensitivity. Similar results were obtained for
TND-MLMD cases. In summary, 10 controls can produce
statistically and biologically significant results, though
20 controls are preferable to obtain higher sensitivity.
Additional file 1: Table S5 presents the sites found in
TND-MLMD and BWS-MLMD samples using the vary-
ing control sizes using the CH t-test. No further significant
improvement was observed using a larger control group
(>50 controls), therefore, we restricted our maximum
number of controls to 50.

Effect size calculation
In order to determine the effect of the CH t-test on the
magnitude of differential methylation, the effect size for
each sample was calculated against variable numbers of
controls (5, 10, 20, 30, 40 or 50). For both TND-MLMD
and BWS-MLMD samples, at the majority of differen-
tially methylated regions, the effect sizes were similar ir-
respective of the number of controls. However, at some
regions of differential methylation, the effect size was
greater when control group size = 5 rather than ≥10. To
determine the reliability of the effect size, point esti-
mates and 95% confidence intervals of those effect sizes
were calculated.
In general for TND-MLMD samples, the confidence

interval was strikingly wider with 5 than 10 controls. For
example, at the PLAGL1 region in TND-MLMD3, with
5 controls the effect size was −24.650, but the confi-
dence interval was wide (−41.162 to −8.549), indicating
this effect size as unreliable. With 40 controls, the effect
size was much smaller (−13.875), but its confidence
interval (−16.953 to −10.789) was tighter (Additional file 1:
Table S6). With 20 controls, the effect size was inter-
mediate −21.309, with confidence interval −28.033 to
−14.574. The width of the confidence interval is attrib-
uted to the extreme hypomethylation of the PLAGL1
locus, which is a typical biological finding in TND but
detrimental to effect size. For subtle changes in methyla-
tion, the effect sizes were much smaller, and use of 10,
20 or 30 controls resulted in large effect sizes with tight
confidence intervals in both TND-MLMD and BWS-
MLMD. Therefore, 20 controls appeared optimal for
single sample analyses.
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Discussion
There are a number of motivations for developing this sin-
gle sample case-control method for analysing Illumina
450 k methylation data. Firstly, the study population - pa-
tients with imprinting disorders - is small, and classic
case-control studies would not yield statistically significant
results. Secondly, individual patients have unique clinical
features and unique epimutations and therefore require
individual analysis to yield relevant epigenetic data with
clinical utility. Thirdly, our former small-sample analysis
approach [7] requires large control numbers to attain high
statistical robustness, which is not always feasible for
analysing single patients. Fourthly, use of large control
batches would be prohibitively expensive if epigenomic
array analysis is to be adopted as a pragmatic tool for epi-
genetic diagnosis of patients. Technical replication of the
same sample in different batches, with different controls,
clearly confirmed that our approach robustly detected
statistically significant sites. The method also identified
outlier samples, which is not possible for grouped case-
control studies. The pipeline clearly identified one BWS-
HIL patient with large abnormal DNA methylation
variations (may be due to technical variations) in multiple
locations, though these may be due to technical variation
(Additional file 1: Table S1). It should be noted that the
threshold P value of 0.05 is not as stringent as that used
for case-control analyses (< 1.33 × 10− 7) but nonetheless
does robustly identify imprinted loci.
The CH t-test method has the advantage of reporting

not only probability of significant methylation changes
but also the magnitude of the change by its effect size
point estimate and confidence intervals. The power calcu-
lation interval shows the uncertainty of the point estimate
of the effect size and its variation with the number of
controls [20]. Using this metric gave a concrete indication
of the number of controls required to yield significant
results.
The optimal number of controls for this approach was

determined empirically, as the number of controls for
which known imprinted loci were robustly detected. In
broad terms, fewer than ten controls gave unreliable ef-
fect sizes (large confidence intervals), whereas control
sizes of 10 and 20 gave improvements in confidence, and
a modest additional improvement was achieved for >20
controls. We, therefore, suggest that 20 controls in the
same batch are optimal for this approach, and using 10
controls is feasible in statistical terms. However, a re-
quirement for large numbers of controls is not ideal for
use in a diagnostic setting where cost is a consideration.
We are currently attempting to identify robust methods
for identifying methylation changes without the need for
batch-matched controls. Though it is true that use of
smaller numbers of controls runs the risk of violating
the normality assumption, the effect of departure from
normality is modest in case of the CH-test, as it is capable
of controlling the Type I error rate [21,22]. While using
large numbers of controls assures the normality of the dis-
tribution from the controls, in our empirical tests, we ob-
served only incremental increases in statistical power with
increase in control number above 20 controls.
We found the 450 k array to have unexpected benefits

compared with targeted testing. Firstly, 450 k analysis is
by definition an epigenome-wide approach and therefore
detected DNA methylation variation at other loci not
normally assessed in targeted testing for imprinting dis-
orders. This expands of the scope of differentially meth-
ylated regions for future analysis. Secondly, 450 k data
analysis was sensitive to subtle methylation changes at
differentially methylated regions to the point where it
detected variations that were undetected in targeted test-
ing. Two cases that appeared by targeted testing to show
‘simple’ methylation changes (one TND and one BWS)
were shown by 450 k array to have MLMD with subtle
variations at several imprinted loci, which may be rele-
vant to the clinical presentation of these individuals.
This sensitivity probably stems from the fact that differ-
entially methylated regions of imprinted genes frequently
span tens or hundreds of CpG dinucleotides. While tar-
geted testing is a single-point analysis, so a subtle vari-
ation may not be distinguishable from the normal range,
whereas using the 450 k array a subtle variation may be
reiterated many times sequentially, increasing its statistical
robustness. Thirdly, differentially methylated regions are
typified by dense clustering of CpG dinucleotides, and
450 k analysis reports on multiple CpGs in any given
locus, and therefore, it gives information about the extent
of methylation anomalies across a locus. This may offer
novel information about the extent and effects of methyla-
tion changes across gene clusters.
An obvious limitation of 450 k-based analysis is that

the array targets only a small percentage of potentially
methylated cytosines in the genome; therefore, additional
loci affected in these patients may remain undetected by
this method. However, the disadvantage of incomplete
coverage is offset by the advantages of cost and technical
consistency.
450 k array-based analysis has not previously been

used on patients with imprinting disorders, because their
rarity and heterogeneity precluded the use of established
case-control cohort studies. This is potentially very im-
portant for imprinting disorders, where standard diagnos-
tic testing is fragmented, time-consuming and variably
sensitive, and where clinically heterogeneous and overlap-
ping features (for example pre- and post-natal growth dys-
regulation) can be associated with multiple epigenetic
mutations, many of which are not included in current
testing regimes. 450 k analysis offers potential for diagno-
sis of known imprinting disorders and for detection of
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novel patterns of methylation anomalies. This may lead to
substantial improvements in the diagnostic rate and trans-
lational research for imprinting disorders, in the same way
that genome-wide array analysis has advanced the clinical
genetics of common diseases over the last fifteen years
[23-25]. Intriguingly, methylation variation may also act as
a biomarker of underlying genetic anomalies. It is well
known that some deleterious genetic/genomic variations
can be detected by means of consequent methylation
changes: for example, FRAX triplet-repeat expansions
cause promoter methylation and inactivation of the FRAX
gene and Fragile X mental retardation [26], deletions and
rearrangements of the IGF2 enhancer attenuate IGF2 ex-
pression with co-ordinate hypomethylation of promoter
sequences [27] and genetic rearrangements in Lynch syn-
drome are detectable as epigenetic inactivation of MSH2
[28]. We suggest that epigenome-wide DNA methylation
analysis may be a powerful adjunct to genomic analysis,
since it may indirectly indicate genomic variations that do
not alter coding sequence but do alter gene expression.
Conclusions
Using the Crawford-Howell t-test in single sample case-
control studies is a novel approach for analysing Illumina
450 k array methylation data. By this method, we identi-
fied statistically and biologically significant hypomethyla-
tion in individuals at both known and novel sites. We
suggest that single sample analysis makes possible the use
of the 450 k array as a translational research or diagnostic
tool for human disorders associated with disturbance of
DNA methylation.
Methods
Study and control populations
For this study, we selected patients with two imprinting dis-
orders, Transient Neonatal Diabetes (TND) and Beckwith-
Wiedemann Syndrome (BWS). These patients have been
described previously, and their methylation levels deter-
mined at several imprinted loci by targeted testing
[7,9,29]. In our recent study [7], five multi-locus methyla-
tion disorder patient samples from each clinically classi-
fied group (TND or BWS) were processed in separate
batches with 245 and 221 anonymous healthy controls, re-
spectively, from an unrelated study. In this study, we add-
itionally included four TND and three BWS patients
where targeted testing detected DNA hypomethylation
only at the cardinal disease loci, with no known involve-
ment of any other imprinted locus (denoted ‘simple’ BWS
and TND cases). These samples were processed in a third
batch with 63 anonymous healthy controls from an unre-
lated study. Batch-matched controls were chosen as the
control group and randomly selected for each sample ana-
lysed in the single sample analysis pipeline.
Data analysis
To assess the methylation level in each sample, a standard
workflow was followed. The DNA in each sample was ex-
tracted from the whole blood by the standard procedure
described in [30], and DNA concentration was determined
using PicoGreen dsDNA Quantitation Kit (Molecular
Probes, Inc., OR, USA). One microgram of DNA was
bisulfite-treated for converting cytosine to thymine using
the EZ 96-DNA Methylation Kit (Zymo Research, CA,
USA). Illumina Infinium HumanMethylation450 Bead-
Chip (Illumina, Inc., CA, USA), which was processed fol-
lowing standard protocol [31], was used to estimate
genome-wide DNA methylation. Multiple identical con-
trol samples were assigned to each batch to assess assay
variability and control batch effects. The BeadChips were
scanned by the BeadStation and the methylation levels, as
beta (β) values, were extracted using the Methylation
Module of GenomeStudio (version 2011.1). The methyla-
tion data were then pre-processed further, as described in
the following section.

Single sample analysis pipeline
The single sample analysis pipeline was developed com-
bining the Illumina Methylation Analyzer (IMA) package
[32] and implementation of single sample t-tests within
the R statistical analysis environment (http://www.r-
project.org). In the first stage, the IMA package is used
for pre-processing and quality control, and the output
data are used single sample analysis. The workflow of
the pipeline is shown in Figure 6, and the steps are de-
scribed as follows.

Pre-processing
Pre-processing of the 450 k data first removes any CpG
sites with missing values, followed by removal of any sam-
ple where >90% CpG sites have detection P value >0.05,
and any CpG sites where >75% samples have detection
P value >10−5. Probes on the X and Y chromosomes were
removed to discard any sex bias within the samples. The
beta-values were converted to logit transformed M values,
and quantile normalisation was used to normalise signal
intensities to reduce inter-array variation [33]. Peak cor-
rection [34] was applied to correct differences between
Infinium I and Infinium II type assays. No batch correc-
tion was required as each case and its corresponding
controls were drawn from the same batch. Statistically sig-
nificant differences between the pre-processed M values
of cases and controls were determined using single sample
t-tests.

Statistical tests for identifying significant differential
methylation
In our single sample studies, we mainly used the CH t-test
method (described in [12] and [35]) for statistical analysis

http://www.r-project.org
http://www.r-project.org


Figure 6 Workflow of the single case-control pipeline. Each single case was pre-processed with the controls using IMA package, and then the
Crawford-Howell t-test method was implemented to identify differentially methylated sites. To reduce the rate of false positives, filtration criteria
were set to obtain filtered results.
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of the pre-processed data. The reasons for this selection
are presented in the Results and Discussion sections. This
method is an alternative t-test method, which treats con-
trol sample statistics as statistics rather than as a popula-
tion parameter. The CH t-test is described by

tCH ¼ x�− �x

s
ffiffiffiffiffiffiffi
nþ1
n

q

Where x* is the single sample score, �x and s are the
mean and standard deviation of scores in control sam-
ples, respectively, and n is the size of the control sample.
If the t-value (tCH) falls below the one-tailed 5% critical
value for t on n-1 degrees of freedom (df ), then it can be
said that the case score sufficiently differs from the control
population to refute the null hypothesis. For an example, a
control sample of 10 samples (n = 10) has a mean of 0.5
(�x ¼ 0:5 ) and standard deviation of 0.1 (s = 0.1). If the
case score is 0.4 (x* = 0.4), the t-value, from CH-test, is
0.954 with 9 df and a one-tailed probability using Student
t-distribution of 0.365. Therefore, the case score is not low
enough to reject the null hypothesis that the case score is
drawn from the control population.
To establish the optimal test for or single sample
analysis, we compared the CH t-test method to other
two t-tests, namely - one-sample and Weisberg t-tests.
The one-sample t-test draws inferences regarding sig-

nificant differences between a single case and control
scores. It compares the known control sample mean with
the score of a single case, which is hypothesised as a popu-
lation mean. The formula for the one-sample t-test is

tOS ¼ �x − x�

s=
ffiffiffi
n

p

However, the one-sample t-test exhibits a high type I
error. For an example, if we use the same measures as
above (n ¼ 10; �x ¼ 0:5; s ¼ 0:1; x� ¼ 0:4), we obtain a
t-value of 3.162 with 9 df and the one-tailed probability is
0.012, which incorrectly rejects the null hypothesis.
On the other hand, the Weisberg t-test for outliers

(described in [36]) also can detect abnormal scores of a
single sample against a limited number of control sam-
ples. The formula for the Weisberg t-test is

tWB ¼ x�− �x
s

ffiffiffiffiffiffi
n

n−1

p
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If we apply the same example in case of Weisberg t-test,
we obtain a t-value of −0.949 with 8 df, and the one-tailed
probability is 0.371.

Power calculations for single sample analysis
In order to determine the magnitude of loss of methyla-
tion at significant sites/regions for single sample case-
control analysis, application of a significance test alone
is not ideal [37]. Therefore, we applied a power calcula-
tion for the CH t-test to generate an effect size estimate
using the P value from [20]. This is similar to Cohen’s d,
which is the difference between the means of case and
control samples in standardised units divided by the
pooled standard deviation of the two samples [20]. Simi-
larly for the CH t-test, the effect size index is calculated
using the difference between the single case score (x)
and the mean of controls (�x) divided by the standard de-
viation of controls (sx):

zcc ¼ x− �x
sx

For an example, a control group of 10 samples (n = 10)
has a mean of 0.5 (�x ¼ 0:5 ) and standard deviation of
0.1 (s = 0.1). If the case score is 0.4 (x* = 0.4), zcc = −1.0,
and zcc

ffiffiffi
n

p ¼ −3:162. The noncentrality parameter for
the t-distribution having −3.162 as its 0.975 percentile
point with 9 df is −5.538. Therefore, the lower limit is −
5:538=

ffiffiffi
n

p ¼ −1:751. In the same way, the upper limit
of zcc can be calculated as −0.214.
The t-value from the CH t-test shows the statistical

significance of the difference between case and controls,
whereas the effect size index shows the level of difference
between them. Along with the point estimate of the effect
size, an estimate interval should also be presented in the
single sample analysis. The procedure used in this paper
to measure the confidence interval of the point estimate
of the effect size has been described previously in [35],
and the calculation is further explained in [20].

Filtering criteria
To reduce false positive calls, we further filtered the re-
sults from the significant difference between case and
controls groups by CH t-test and power calculation. To
define sites that were hypomethylated in cases, we ini-
tially set the same stringent criteria as in [7]: one-tailed
P value (adjusted using false discovery rate) < 10−7 and
M value between −1 and +1 in normal controls with the
beta-differences smaller than zero (to select only hypo-
methylated loci). Genes containing at least three CpGs
meeting these criteria within <2000 bp (base pair) were
selected as candidate DMRs consistent with imprinting.
However, when applied to single sample analysis, these
criteria were too stringent to detect known differentially
methylated regions. Therefore, for single sample analyses,
we used a less stringent P value, which was calculated as
described in Statistical tests for identifying significant dif-
ferential methylation: significant methylation changes
were therefore selected as those containing a minimum
of three consecutive CpGs within 2000 nucleotides
with M values between −1 and +1 in normal controls
and P value <0.05.

Minimum number of controls
Using varying numbers of controls (5, 10, 20, 30, 40 or
50) we assessed the impact of control group size in de-
tecting known regions of hypomethylation and changes
in effect size and confidence interval in our single sam-
ple analysis.
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