598 research outputs found

    Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX

    Get PDF
    The hexameric AAA+ ring of Escherichia coli ClpX, an ATP-dependent machine for protein unfolding and translocation, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+-ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U↔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+-ring activity.National Institutes of Health (U.S.) (Grant GM-101988)Massachusetts Institute of Technology (Poitras Predoctoral Fellowship

    A Novel Signaling Network Essential for Regulating Pseudomonas aeruginosa Biofilm Development

    Get PDF
    The important human pathogen Pseudomonas aeruginosa has been linked to numerous biofilm-related chronic infections. Here, we demonstrate that biofilm formation following the transition to the surface attached lifestyle is regulated by three previously undescribed two-component systems: BfiSR (PA4196-4197) harboring an RpoD-like domain, an OmpR-like BfmSR (PA4101-4102), and MifSR (PA5511-5512) belonging to the family of NtrC-like transcriptional regulators. These two-component systems become sequentially phosphorylated during biofilm formation. Inactivation of bfiS, bfmR, and mifR arrested biofilm formation at the transition to the irreversible attachment, maturation-1 and -2 stages, respectively, as indicated by analyses of biofilm architecture, and protein and phosphoprotein patterns. Moreover, discontinuation of bfiS, bfmR, and mifR expression in established biofilms resulted in the collapse of biofilms to an earlier developmental stage, indicating a requirement for these regulatory systems for the development and maintenance of normal biofilm architecture. Interestingly, inactivation did not affect planktonic growth, motility, polysaccharide production, or initial attachment. Further, we demonstrate the interdependency of this two-component systems network with GacS (PA0928), which was found to play a dual role in biofilm formation. This work describes a novel signal transduction network regulating committed biofilm developmental steps following attachment, in which phosphorelays and two sigma factor-dependent response regulators appear to be key components of the regulatory machinery that coordinates gene expression during P. aeruginosa biofilm development in response to environmental cues

    Biosynthesis of Vitamin C by Yeast Leads to Increased Stress Resistance

    Get PDF
    during respiration, or indirectly-caused by other stressing factors. Vitamin C or L-ascorbic acid acts as a scavenger of ROS, thereby potentially protecting cells from harmful oxidative products. While most eukaryotes synthesize ascorbic acid, yeast cells produce erythro-ascorbic acid instead. The actual importance of this antioxidant substance for the yeast is still a subject of scientific debate. is increased, but also the tolerance to low pH and weak organic acids at low pH is increased. cells endogenously producing vitamin C as a cellular model to study the genesis/protection of ROS as well as genotoxicity

    Acacia trees on the cultural landscapes of the Red Sea Hills

    Get PDF
    This paper examines interactions between five pastoral nomadic culture groups of the Egyptian and Sudanese Red Sea Hills and the acacia trees Acacia tortilis (Forssk.) Hayne subsp. tortilis and subsp. raddiana growing in their arid environments. A. tortilis is described as a keystone species both ecologically and culturally: the trees play such critical roles in ecosystems and social groups that their removal would greatly impact both systems. Interviews in the field with the Semitic, Arabic-speaking Ma‘aza and Ababda, and the Cushitic, Beja, Bidhaawyeet-speaking Bishaari, Amar Ar and Hadandawa nomads probed the cultural and ecological contexts of acacias in pastoral nomadism, revealing deep insight into traditional ecological knowledge and traditional perceptions and uses of the trees. The paper describes how this knowledge guides pastoral decision-making, with acacias as a particularly critical component of the pastoral livelihood in both normal and stressful circumstances. A. tortilis is the most important reliable vegetation resource for nomads while also providing fuel and other useful products, ecosystem services for people and animals, and increased biodiversity by providing diverse microhabitats and resources for other species. We describe aspects of kinship, territorial organization, spiritual beliefs and tribal law underlying the significance of trees on the cultural landscape. We discuss environmental and economic challenges to human/tree relationships and to pastoral livelihoods. We challenge views of nomads as agents of ecological destruction, and propose maintenance and restoration of traditional pastoralism as viable alternatives in dryland development

    A Selectable and Excisable Marker System for the Rapid Creation of Recombinant Poxviruses

    Get PDF
    Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM) system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene.The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications

    Aurora-A/STK15/BTAK overexpression induces centrosome amplification, chromosomal instability, and transformation in human urothelial cells

    Get PDF
    Aurora-A/STK15/BTAK kinase encoding gene, located on chromosome 20q13, is frequently amplified and overexpressed in human cancers. Sen et al. previously demonstrated that Aurora-A amplification and overexpression are associated with aneuploidy and clinically aggressive bladder cancer (J Natl Cancer Inst (2002) 94, 1320-1329). To examine if this association is the direct result of Aurora-A gene amplification and overexpression, an immortalized human urothelial cell line (SV-HUC) was infected with an adenoviral Aurora-A-green fluorescent protein (Ad-Aurora-A-GFP) fusion construct inducing ectopic expression of the resulting fusion protein. Controls included mock-infected and adenoviral-GFP infected cells. Ectopic expression of transduced Aurora-A did not alter the doubling time of the SV-HUC cells but significantly increased the number of cells with multiple centrosomes displaying aneuploidy and increased colony formation in soft agar. This is the first report demonstrating that overexpression of Aurora-A induces centrosome anomalies together with chromosomal instability and malignant transformation-associated phenotypic changes in immortalized human urothelial cells, thus supporting the hypothesis that this gene plays an important role in the development of aggressive bladder cancer

    Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The yeast <it>Saccharomyces cerevisiae </it>is able to adjust to external oxygen availability by utilizing both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen is a major determinant of the physiology of <it>S. cerevisiae </it>but understanding of the oxygen dependence of intracellular flux distributions is still scarce.</p> <p>Results</p> <p>Metabolic flux distributions of <it>S. cerevisiae </it>CEN.PK113-1A growing in glucose-limited chemostat cultures at a dilution rate of 0.1 h<sup>-1 </sup>with 20.9%, 2.8%, 1.0%, 0.5% or 0.0% O<sub>2 </sub>in the inlet gas were quantified by <sup>13</sup>C-MFA. Metabolic flux ratios from fractional [U-<sup>13</sup>C]glucose labelling experiments were used to solve the underdetermined MFA system of central carbon metabolism of <it>S. cerevisiae</it>.</p> <p>While ethanol production was observed already in 2.8% oxygen, only minor differences in the flux distribution were observed, compared to fully aerobic conditions. However, in 1.0% and 0.5% oxygen the respiratory rate was severely restricted, resulting in progressively reduced fluxes through the TCA cycle and the direction of major fluxes to the fermentative pathway. A redistribution of fluxes was observed in all branching points of central carbon metabolism. Yet only when oxygen provision was reduced to 0.5%, was the biomass yield exceeded by the yields of ethanol and CO<sub>2</sub>. Respirative ATP generation provided 59% of the ATP demand in fully aerobic conditions and still a substantial 25% in 0.5% oxygenation. An extensive redistribution of fluxes was observed in anaerobic conditions compared to all the aerobic conditions. Positive correlation between the transcriptional levels of metabolic enzymes and the corresponding fluxes in the different oxygenation conditions was found only in the respirative pathway.</p> <p>Conclusion</p> <p><sup>13</sup>C-constrained MFA enabled quantitative determination of intracellular fluxes in conditions of different redox challenges without including redox cofactors in metabolite mass balances. A redistribution of fluxes was observed not only for respirative, respiro-fermentative and fermentative metabolisms, but also for cells grown with 2.8%, 1.0% and 0.5% oxygen. Although the cellular metabolism was respiro-fermentative in each of these low oxygen conditions, the actual amount of oxygen available resulted in different contributions through respirative and fermentative pathways.</p

    Monitoring Procalcitonin in Febrile Neutropenia: What Is Its Utility for Initial Diagnosis of Infection and Reassessment in Persistent Fever?

    Get PDF
    Background: Management of febrile neutropenic episodes (FE) is challenged by lacking microbiological and clinical documentation of infection. We aimed at evaluating the utility of monitoring blood procalcitonin (PCT) in FE for initial diagnosis of infection and reassessment in persistent fever.Methods: PCT kinetics was prospectively monitored in 194 consecutive FE (1771 blood samples): 65 microbiologically documented infections (MDI, 33.5%; 49 due to non-coagulase-negative staphylococci, non-CNS), 68 clinically documented infections (CDI, 35%; 39 deep-seated), and 61 fever of unexplained origin (FUO, 31.5%).Results: At fever onset median PCT was 190 pg/mL (range 30-26'800), without significant difference among MDI, CDI and FUO. PCT peak occurred on day 2 after onset of fever: non-CNS-MDI/deep-seated-CDI (656, 80-86350) vs. FUO (205, 33-771; p&lt;0.001). PCT &gt;500 pg/mL distinguished non-CNS-MDI/deep-seated-CDI from FUO with 56% sensitivity and 90% specificity. PCT was &gt;500 pg/ml in only 10% of FUO (688, 570-771). A PCT peak &gt;500 pg/mL (1196, 524-11950) occurred beyond 3 days of persistent fever in 17/21 (81%) invasive fungal diseases (IFD). This late PCT peak identified IFD with 81% sensitivity and 57% specificity and preceded diagnosis according to EORTC-MSG criteria in 41% of cases. In IFD responding to therapy, median days to PCT &lt;500 pg/mL and defervescence were 5 (1-23) vs. 10 (3-22; p = 0.026), respectively.Conclusion: While procalcitonin is not useful for diagnosis of infection at onset of neutropenic fever, it may help to distinguish a minority of potentially severe infections among FUOs on day 2 after onset of fever. In persistent fever monitoring procalcitonin contributes to early diagnosis and follow-up of invasive mycose

    Succinic semialdehyde dehydrogenase deficiency: Lessons from mice and men

    Get PDF
    Succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder of GABA degradation with subsequent elevations in brain GABA and GHB, is a neurometabolic disorder with intellectual disability, epilepsy, hypotonia, ataxia, sleep disorders, and psychiatric disturbances. Neuroimaging reveals increased T2-weighted MRI signal usually affecting the globus pallidus, cerebellar dentate nucleus, and subthalamic nucleus, and often cerebral and cerebellar atrophy. EEG abnormalities are usually generalized spike-wave, consistent with a predilection for generalized epilepsy. The murine phenotype is characterized by failure-to-thrive, progressive ataxia, and a transition from generalized absence to tonic-clonic to ultimately fatal convulsive status epilepticus. Binding and electrophysiological studies demonstrate use-dependent downregulation of GABA(A) and (B) receptors in the mutant mouse. Translational human studies similarly reveal downregulation of GABAergic activity in patients, utilizing flumazenil-PET and transcranial magnetic stimulation for GABA(A) and (B) activity, respectively. Sleep studies reveal decreased stage REM with prolonged REM latencies and diminished percentage of stage REM. An ad libitum ketogenic diet was reported as effective in the mouse model, with unclear applicability to the human condition. Acute application of SGS–742, a GABA(B) antagonist, leads to improvement in epileptiform activity on electrocorticography. Promising mouse data using compounds available for clinical use, including taurine and SGS–742, form the framework for human trials

    Calcium Handling in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes

    Get PDF
    BACKGROUND: The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs). METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and immunocytochemistry experiments identified the expression of key Ca(2+)-handling proteins. Detailed laser confocal Ca(2+) imaging demonstrated spontaneous whole-cell [Ca(2+)](i) transients. These transients required Ca(2+) influx via L-type Ca(2+) channels, as demonstrated by their elimination in the absence of extracellular Ca(2+) or by administration of the L-type Ca(2+) channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca(2+) store, contributing to [Ca(2+)](i) transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca(2+)) and ryanodine (decreasing [Ca(2+)](i)). Similarly, the importance of Ca(2+) reuptake into the SR via the SR Ca(2+) ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca(2+)](i) transients elimination. Finally, the presence of an IP3-releasable Ca(2+) pool in hiPSC-CMs and its contribution to whole-cell [Ca(2+)](i) transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phospholipase C inhibitor U73122. CONCLUSIONS/SIGNIFICANCE: Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca(2+) store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca(2+)](i) transients in hiPSC-CMs on both sarcolemmal Ca(2+) entry via L-type Ca(2+) channels and intracellular store Ca(2+) release
    corecore