229 research outputs found

    Identification and characterisation of enteroaggregative Escherichia coli subtypes associated with human disease

    Get PDF
    Enteroaggregative E. coli (EAEC) are a major cause of diarrhoea worldwide. Due to their heterogeneity and carriage in healthy individuals, identification of diagnostic virulence markers for pathogenic strains has been difficult. In this study, we have determined phenotypic and genotypic differences between EAEC strains of sequence types (STs) epidemiologically associated with asymptomatic carriage (ST31) and diarrhoeal disease (ST40). ST40 strains demonstrated significantly enhanced intestinal adherence, biofilm formation, and pro-inflammatory interleukin-8 secretion compared with ST31 isolates. This was independent of whether strains were derived from diarrhoea patients or healthy controls. Whole genome sequencing revealed differences in putative virulence genes encoding aggregative adherence fimbriae, E. coli common pilus, flagellin and EAEC heat-stable enterotoxin 1. Our results indicate that ST40 strains have a higher intrinsic potential of human pathogenesis due to a specific combination of virulence-related factors which promote host cell colonization and inflammation. These findings may contribute to the development of genotypic and/or phenotypic markers for EAEC strains of high virulence

    Reflections and Experiences of a Co-Researcher involved in a Renal Research Study

    Get PDF
    Background Patient and Public Involvement (PPI) is seen as a prerequisite for health research. However, current Patient and public involvement literature has noted a paucity of recording of patient and public involvement within research studies. There have been calls for more recordings and reflections, specifically on impact. Renal medicine has also had similar criticisms and any reflections on patient and public involvement has usually been from the viewpoint of the researcher. Roles of patient and public involvement can vary greatly from sitting on an Advisory Group to analysing data. Different PPI roles have been described within studies; one being a co-researcher. However, the role of the co-researcher is largely undefined and appears to vary from study to study. Methods The aims of this paper are to share one first time co-researcher's reflections on the impact of PPI within a mixed methods (non-clinical trial) renal research study. A retrospective, reflective approach was taken using data available to the co-researcher as part of the day-to-day research activity. Electronic correspondence and documents such as meeting notes, minutes, interview thematic analysis and comments on documents were re-examined. The co-researcher led on writing this paper. Results This paper offers a broad definition of the role of the co-researcher. The co-researcher reflects on undertaking and leading on the thematic analysis of interview transcripts, something she had not previously done before. The co-researcher identified a number of key themes; the differences in time and responsibility between being a coresearcher and an Advisory Group member; how the role evolved and involvement activities could match the co-researchers strengths (and the need for flexibility); the need for training and support and lastly, the time commitment. It was also noted that it is preferable that a co-researcher needs to be involved from the very beginning of the grant application. Conclusions The reflections, voices and views of those undertaking PPI has been largely underrepresented in the literature. The role of co-researcher was seen to be rewarding but demanding, requiring a large time commitment. It is hoped that the learning from sharing this experience will encourage others to undertake this role, and encourage researchers to reflect on the needs of those involved.Peer reviewedFinal Published versio

    Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors

    Get PDF
    The synthesis of benzylacetone from benzyl alcohol and of 4-(4-methoxyphenyl)butan-2-one from 4-methoxybenzyl alcohol, which were previously performed in a batch cascade, were successfully performed in a telescoped flow system consisting of three micropacked bed reactors and a tube-in-tube membrane to remove oxygen. The system consisted of approximately 10 mg of 1 wt% AuPd/TiO2 catalyst for oxidation, 150–250 mg of anatase TiO2 for C–C coupling and 10 mg of 1 wt% Pt/TiO2 for reduction, operating at 115 °C, 130 °C and 120 °C respectively. Oxygen and hydrogen flowrates were 2 and 1.5 NmL/min and alcohol solution inlet flowrates were 10–80 µL/min, while the system operated at a back pressure of 5 barg. This system achieved significantly increased yields of benzylacetone compared to the batch cascade (56% compared to 8%) and slightly increased yields of 4-(4-methoxyphenyl)butan-2-one (48% compared to 41% when using the same catalyst supports). The major advantage of the telescoped flow system was the ability to separate the three reactions, so that each reaction could have its own catalyst and operating conditions, which led to significant process intensification

    Quantification of radial arterial pulse characteristics change during exercise and recovery

    Get PDF
    It is physiologically important to understand the arterial pulse waveform characteristics change during exercise and recovery. However, there is a lack of a comprehensive investigation. This study aimed to provide scientific evidence on the arterial pulse characteristics change during exercise and recovery. Sixty-five healthy subjects were studied. The exercise loads were gradually increased from 0 to 125 W for female subjects and to 150 W for male subjects. Radial pulses were digitally recorded during exercise and 4-min recovery. Four parameters were extracted from the raw arterial pulse waveform, including the pulse amplitude, width, pulse peak and dicrotic notch time. Five parameters were extracted from the normalized radial pulse waveform, including the pulse peak and dicrotic notch position, pulse Area, Area1 and Area2 separated by notch point. With increasing loads during exercise, the raw pulse amplitude increased significantly with decreased pulse period, reduced peak and notch time. From the normalized pulses, the pulse Area, pulse Area1 and Area2 decreased, respectively, from 38 ± 4, 61 ± 5 and 23 ± 5 at rest to 34 ± 4, 52 ± 6 and 13 ± 5 at 150-W exercise load. During recovery, an opposite trend was observed. This study quantitatively demonstrated significant changes of radial pulse characteristics during different exercise loads and recovery phases

    Comparison of the influence of cyclosporine and tacrolimus on the pharmacokinetics of prednisolone in adult male kidney transplant recipients

    Get PDF
    Cyclosporine has been observed to precipitate cushingoid features in kidney transplant recipients already on prednisolone. Some pharmacokinetic studies have demonstrated increased prednisolone exposure in patients on cyclosporine therapy compared with azathioprine, whereas other studies have found no difference. The objective of this study was to determine whether cyclosporine impacts on prednisolone exposure as compared with tacrolimus

    Harnessing hypoxic adaptation to prevent, treat, and repair stroke

    Get PDF
    The brain demands oxygen and glucose to fulfill its roles as the master regulator of body functions as diverse as bladder control and creative thinking. Chemical and electrical transmission in the nervous system is rapidly disrupted in stroke as a result of hypoxia and hypoglycemia. Despite being highly evolved in its architecture, the human brain appears to utilize phylogenetically conserved homeostatic strategies to combat hypoxia and ischemia. Specifically, several converging lines of inquiry have demonstrated that the transcription factor hypoxia-inducible factor-1 (HIF1-1) mediates the activation of a large cassette of genes involved in adaptation to hypoxia in surviving neurons after stroke. Accordingly, pharmacological or molecular approaches that engage hypoxic adaptation at the point of one of its sensors (e.g., inhibition of HIF prolyl 4 hydroxylases) leads to profound sparing of brain tissue and enhanced recovery of function. In this review, we discuss the potential mechanisms that could subserve protective and restorative effects of augmenting hypoxic adaptation in the brain. The strategy appears to involve HIF-dependent and HIF-independent pathways and more than 70 genes and proteins activated transcriptionally and post-transcriptionally that can act at cellular, local, and system levels to compensate for oxygen insufficiency. The breadth and depth of this homeostatic program offers a hopeful alternative to the current pessimism towards stroke therapeutics

    Efficiency of Peptide Nucleic Acid-Directed PCR Clamping and Its Application in the Investigation of Natural Diets of the Japanese Eel Leptocephali

    Get PDF
    Polymerase chain reaction (PCR)-clamping using blocking primer and DNA-analogs, such as peptide nucleotide acid (PNA), may be used to selectively amplify target DNA for molecular diet analysis. We investigated PCR-clamping efficiency by studying PNA position and mismatch with complementary DNA by designing PNAs at five different positions on the nuclear rDNA internal transcribed spacer 1 of the Japanese eel Anguilla japonica in association with intra-specific nucleotide substitutions. All five PNAs were observed to efficiently inhibit amplification of a fully complementary DNA template. One mismatch between PNA and template DNA inhibited amplification of the template DNA, while two or more mismatches did not. DNA samples extracted from dorsal muscle and intestine of eight wild-caught leptochephalus larvae were subjected to this analysis, followed by cloning, nucleotide sequence analysis, and database homology search. Among 12 sequence types obtained from the intestine sample, six were identified as fungi. No sequence similarities were found in the database for the remaining six types, which were not related to one another. These results, in conjunction with our laboratory observations on larval feeding, suggest that eel leptocephali may not be dependent upon living plankton for their food source

    Identification of Trypanosome Proteins in Plasma from African Sleeping Sickness Patients Infected with T. b. rhodesiense

    Get PDF
    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a ‘deep-mining” proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification

    Comparison of Two Quantitative Methods of Discerning Airspace Enlargement in Smoke-Exposed Mice

    Get PDF
    In this work, we compare two methods for evaluating and quantifying pulmonary airspace enlargement in a mouse model of chronic cigarette smoke exposure. Standard stereological sample preparation, sectioning, and imaging of mouse lung tissues were performed for semi-automated acquisition of mean linear intercept (Lm) data. After completion of the Lm measurements, D2, a metric of airspace enlargement, was measured in a blinded manner on the same lung images using a fully automated technique developed in-house. An analysis of variance (ANOVA) shows that although Lm was able to separate the smoke-exposed and control groups with statistical significance (p = 0.034), D2 was better able to differentiate the groups (p<0.001) and did so without any overlap between the control and smoke-exposed individual animal data. In addition, the fully automated implementation of D2 represented a time savings of at least 24x over semi-automated Lm measurements. Although D2 does not provide 3D stereological metrics of airspace dimensions as Lm does, results show that it has higher sensitivity and specificity for detecting the subtle airspace enlargement one would expect to find in mild or early stage emphysema. Therefore, D2 may serve as a more accurate screening measure for detecting early lung disease than Lm
    corecore