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Abstract 

Catalytic reaction studies and Nuclear Magnetic Resonance (NMR) relaxation time measurements 

have been compared to study the influence of competitive adsorption of reactant and solvent on 

catalytic conversion. The reaction chosen is the aerobic catalytic oxidation of 1,4-butanediol in 

methanol over different supported-metal catalysts. From the NMR T1/T2 ratio, where T1 is the 

longitudinal and T2 the transverse spin relaxation time, the relative affinity of reactant and solvent 

for different catalytic surfaces is determined. The catalysts with the lowest activity show a 

preferential surface affinity for the solvent compared to the reactant. Conversely, the catalyst with 

the highest activity shows a preferential surface affinity for the reactant compared to the solvent. 

Significantly, Ru/SiO2, which is totally inactive for the oxidation of 1,4-butanediol, exhibited a 

lower T1/T2 ratio (surface affinity) for 1,4-butanediol (reactant) than for a “weakly-interacting” 

alkane, indicating a very poor surface affinity for the diol functionality. The results provide direct 

evidence of the importance of the adsorbate-adsorbent interactions on catalyst activity in liquid-

phase oxidations and indicate that the competitive adsorption of the solvent plays an important role 

in these reactions. This work demonstrates that NMR relaxation time analysis is a powerful method 

for comparing adsorption of liquids in porous catalysts, providing valuable information on the 

affinity of different chemical species for a catalyst surface. Moreover, the results demonstrate that 

NMR relaxation time measurements can be used not only to guide selection of solvent for use with 

a specific catalyst, but also selection of the catalyst itself.  The results suggest that this method may 

be used to predict catalyst behaviour, enabling improved design and optimisation of heterogeneous 

catalytic processes. 

 

 

Keywords: Oxidation of 1,4-butanediol, heterogeneous catalysts, NMR relaxation, adsorption, 

porous materials 
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Introduction 

The adsorption of organic molecules onto catalytic surfaces is a fundamental step in heterogeneous 

catalysis, and it therefore follows that an experimental probe quantifying the strength of adsorption 

over solid surfaces should give valuable insights into the design of novel catalysts and catalytic 

processes. In the liquid-phase oxidation of hydroxyl groups, the adsorption of the reactant from the 

bulk solution onto the catalyst surface is widely recognised as the initial step in the oxidation 

reaction.
1, 2

 Based on the oxidative dehydrogenation mechanism, the oxidation of the hydroxyl 

group starts according to: 

 

RCH2OH(sol) ⇄ RCH2OH(ads) → RCHO(ads)  + 2H(ads) 

 

The adsorption of the reactant in solution onto the catalyst surface occurs at equilibrium. The O-H 

bond in the alcohol breaks upon adsorption on the surface site, yielding hydrogen and an alkoxide. 

Adsorbed oxygen is necessary to oxidise the co-produced hydrogen, thus shifting the equilibrium 

towards the products. 

Research into the development of sustainable routes for chemical production has recently focused 

attention towards the catalytic oxidation of diols and polyols. The use of large amounts of solvent is 

always necessary in this type of reaction due to the high viscosity of the reactants. Water and 

methanol tend to be the solvent of choice.
3-7

 However, the inter-play between adsorption of reactant 

and solvent can be central to determining the catalytic activity of a certain catalyst for a specific 

reaction. The choice of an optimum solvent has often been reported to be critical for achieving 

effective catalytic performance.
8-12

 An ideal solvent should not be adsorbed onto the catalyst 

surface, or at least its adsorption strength should be much lower than that of the reactant.
13

 

Therefore, a comparison of the adsorption strength of reactants and solvents yields important 

information and may enable predictions of the catalytic behaviour in a specific chemical reaction. 

NMR relaxation time analysis has emerged in recent years as a non-invasive tool for probing 

surface interactions of liquids in porous media. The strength of surface interaction from NMR 

relaxation time measurements can be inferred by the T1/T2 ratio,
14-17

 where T1 is the longitudinal 

relaxation time and T2 is the transverse relaxation time. The T1/T2 ratio can also be seen as an 

equivalent energy of surface interaction, which is related to the residence time of molecules over the 

surface.
18

 This methodology has been successfully used to study interactions of liquids in a variety 

of porous media
14, 16, 19, 20

 and has recently been used to probe surface interactions in supported-

metal catalysts;
15

 the application of the technique in heterogeneous catalysis is, however, still at an 
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early stage. In our previous work
21

 we used NMR relaxation time measurements and NMR 

diffusometry to study the effect of solvent composition on the oxidation of 1,4-butanediol over 

Au/TiO2 catalyst and we concluded that adsorption plays a key role in the oxidation of diols over 

supported-metal mesoporous catalysts.  

The T1/T2 ratio is particularly useful in characterising the relative strengths of surface interactions of 

molecules in different porous materials. In particular, T1 and T2 are sensitive to rotational and 

translational dynamics to different extents. Relative to the bulk, molecules adsorbed onto surfaces 

exhibit modified rotational dynamics and slower translational diffusion. More precisely, 1/T2 has a 

spectral density contribution at zero frequency, J(0), and one contribution at higher frequencies, 

J(ω0), while 1/T1 depends only on spectral densities at higher frequencies, J(ω0). As a result, T2 is 

further affected by changes in molecular dynamics at the surface and is able to probe slow motions. 

The ratio T1/T2 can therefore be linked to the interaction strength of reactants or solvents with the 

catalyst surface: the higher the T1/T2 ratio, the higher the strength of interaction with the surface. 

We have recently proven that this ratio can be related to an activation energy of desorption, hence it 

can be used as a non-invasive probe to describe surface interactions of molecules adsorbed over 

surfaces.
22

 In addition, unlike single values of T1 and T2, the ratio of the two relaxation times is 

independent on pore geometry. Hence, it becomes possible to compare the relative strengths of 

surface interactions between materials with very different pore sizes, i.e., pores with different 

surface-to-volume ratio, S/V. Indeed, the T1/T2 ratio can be considered as the equivalent of an 

activation energy of adsorption
22, 23

 and this was recently shown and experimentally validated by 

combining NMR relaxation time measurements with temperature-programmed desorption (TPD) 

when studying adsorption of water in several mesoporous materials used as catalysts and supports.
22

 

Therefore, in principle with appropriate calibration, by knowing this ratio, it is possible to quantify 

the adsorption strength of liquids in porous catalysts. 

In the present work, we consider the same reactant/solvent system as studied in our previous work 

and demonstrate that NMR relaxation time measurements can be used to guide selection of the 

catalysts, which gives the highest catalytic conversion. We use NMR relaxation time measurements 

to study surface interactions of 1,4-butanediol (reactant) and methanol (solvent) species, relevant to 

the aerobic oxidation of 1,4-butanediol, over a series of heterogeneous supported-metal catalysts. 

The results are then compared with the activity of each catalyst and a correlation between catalyst 

activity and the adsorption characteristics of the reactant and solvent is drawn. Although not 

required to produce the correlation between catalyst activity and the ratio of T1/T2 values 

determined for the reactant and solvent, the T1/T2 for cyclohexane is also reported for each catalyst. 

The absolute values of T1, T2 and T1/T2 for a given solvent interacting with each catalyst will be 
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different. Hence, cyclohexane is used as a reference molecule, chosen because it will not have any 

specific interaction with the catalyst surface, so that the absolute values of T1/T2 can be put in 

context.   

 

Experimental methods 

Catalysts and chemicals 

2%Pt/SiO2, 0.5%Pd/Al2O3 and 1%Ru/SiO2 were supplied by Johnson Matthey, UK. 

2.5%AuPd/SiO2 (1.25wt%Au and 1.25wt%Pd) was prepared by wet impregnation. The detailed 

procedure for the preparation of the catalyst follows. Palladium chloride (20.83 mg) was dissolved 

in an aqueous solution of aurochloric acid (2.04 mL of 12.25 mg/mL solution). Silica support 

(0.975 g) was then added and the mixture was stirred and heated until a paste was formed. The 

catalyst was then dried (110 °C, 16 h). After this time the catalyst was ground and calcined at 400 

°C for 3 hours with a ramp rate of 20 °C/min. The 2.5%Pd/TiO2(a) (TiO2 anatase from Evonik 

Degussa used as support), 2.5%Pt/TiO2(r) (TiO2 rutile from Evonik Degussa used as support), and 

2.5%Pd/ZrO2 were prepared by an incipient wetness impregnation. All quoted metal loadings are 

wt% and for simplicity, in the following text, figures and tables the metal loading will be omitted 

when referring to these catalysts. The incipient wetness method is described as follows. Prior to 

catalyst preparation, the cold water pick up (CWPU) volumes were measured by carefully adding 

demineralised water to  support (10 g) with a pipette until it appeared wet but no excess water was 

visible. The pore volume was also measured by BET analysis and a good agreement between the 

two methods was found. Then a sufficient amount of aqueous palladium nitrate Pd(NO3)2, or 

tetraammine platinum hydroxide Pt(NH2)4(OH)2, solution was diluted with demineralised water and 

used to saturate the support. The products were dried (105 °C, 20 mins) with periodic stirring in an 

effort to counter the effects of wicking and were then calcined (500 °C, 2 h). Methanol, 1,4-

butanediol and cyclohexane were purchased from Sigma Aldrich and were of the highest purity 

available. 

 

 

Catalytic reaction  

A 50 mL glass reactor was charged with 1,4-butanediol (0.27g), sodium methoxide (0.13g), 

methanol (10mL) and catalyst (reactant : metal = 500). The reaction mixture was heated to 40 °C 

and pressurised to 3 bar of oxygen. Gas chromatographic analysis was carried out using a Varian 

3800 chromatograph equipped with a CP 8400 autosampler and CP-wax 52 column. Products were 
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identified by comparison with authentic samples and quantifications were established using an 

external calibration method. The conversion was calculated according to the following equation: 

 

100(%) 



start

endstart

n

nn
Conversion                                                 (1) 

 

where startn and endn are the moles of 1,4-butanediol at the beginning and after 48 h reaction time, 

respectively. The main reaction product was γ-butyrolactone for all catalysts. 

 

 

NMR measurements 

NMR experiments were performed on a Bruker DMX 300 operating at a 
1
H frequency of 300.13 

MHz. The T1 times were measured using the inversion recovery pulse sequence
24

 and the transverse 

T2 times were measured with the CPMG (Carr Purcell Meiboom Gill) pulse sequence.
24

 Samples for 

NMR measurements were prepared by soaking the catalyst grains in each liquid for at least 24 hours 

to equilibrate. The grains were then dried on a pre-soaked filter paper in order to remove any excess 

liquid on the external surface and finally transferred to 5 mm NMR tubes. To ensure a saturated 

atmosphere in the NMR tube, hence minimising errors due to evaporation of volatile liquids, a 

small amount of pure liquid was adsorbed onto filter paper, which was then placed under the cap of 

the NMR tube and sealed with parafilm. The sample was finally placed into the magnet and left for 

approximately 20 mins to achieve thermal equilibrium before the start of the measurements. All 

measurements were carried out at atmospheric pressure and 20 °C ± 0.5 °C. The typical relative 

error on the T1 and T2 measurements was 2%, which gives a combined error of approximately 3% 

on the T1/T2 values. 

 

Results and discussion 

The conversion, as defined in Equation (1), of the different solid catalysts for the oxidation of 1,4-

butanediol are reported in Figure 1. 

 



 7 

 

Figure 1. Conversion of 1,4-butanediol at 48 h reaction time. The main reaction product was γ-butyrolactone in all 

cases. 

 

From Figure 1 it is possible to note that the most active catalyst is the bimetallic AuPd/SiO2, with a 

conversion of approximately 50%, whereas Ru/SiO2 is inactive for the reaction, giving negligible 

conversion. There is no correlation between the BET surface area of the catalysts and conversion 

(see Supplementary Information S1). Further, it is observed that the same metal on different 

supports can have significantly different conversion; for example, Pd/TiO2(a) and Pd/ZrO2  give 

conversions of ~23% and ~10%, respectively. Likewise, different metals on the same support are 

also associated with significantly different conversions.  

It has previously been suggested that competitive adsorption between solvent and reactant may 

significantly affect the performances of heterogeneous catalysts in liquid-phase reactions
10

, and this 

has been confirmed in our earlier work on this reaction.
21

 In order to understand the reaction data 

reported in the current work, T1 and T2 relaxation measurements were performed to probe the 

relative strength of surface interaction of reactant and solvent with the catalyst surface and to 

explore the extent to which this correlated with catalytic conversion. Typical 
1
H NMR spectra for 

the samples used in this study are shown in Figure 2 and in Supplementary Information (S2). 
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Figure 2. 1H NMR spectra of (a) methanol and (b) 1,4-butanediol in Pd/TiO2 catalyst. 

 

A set of experimental plots of T1 and T2 relaxation measurements for some of the catalysts used in 

this work (Pd/ZrO2, AuPd/SiO2 and Ru/SiO2) is reported in Figure 3, which shows T1 inversion 

recovery 
24

 (Figure 3a) and T2 CPMG decays 
24

 (Figure 3b) for 1,4-butanediol. Data for the other 

catalysts samples were of similar quality.  

 

 

Figure 3. (a) T1 inversion recovery and (b) T2 CPMG relaxation data of 1,4-butanediol in different catalysts:   (■) 

Pd/ZrO2; (●) AuPd/SiO2; (▲) Ru/SiO2.  The values of the relaxation times are: T1 = 301 ms and T2 = 6 ms for Pd/ZrO2; 

T1 = 242 ms and T2 = 9 ms for AuPd/SiO2; T1 = 272 ms and T2 = 21 ms for Ru/SiO2. The solid lines are fits to the data 

using the theoretical expressions to (a) inversion recovery24  and (b) CPMG decay.24 

 

The results of the relaxation time measurements for the different catalysts are summarised in Figure 

4, which shows the T1/T2 ratio of methanol (solvent), 1,4-butanediol (reactant) and cyclohexane 

(reference compound), together with the catalytic conversion. More details on single values of T1 
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and T2 are given in the Supplementary Information (S3). The main oxidation product was γ-

butyrolactone in all cases. Note that in Figure 4, besides values for the reactant (1,4-butanediol) and 

solvent (methanol), we also report values for cyclohexane, which is not involved in the reaction. As 

mentioned earlier, the T1/T2 of this “weakly-interacting” species is required because the intrinsic T1, 

T2 and T1/T2 for a given molecular species will differ for any given molecule interacting with 

different catalyst surfaces. In this work, we compare the relative magnitudes of the T1/T2 for the 

reactant and solvent species for each catalyst and correlate this with catalyst activity. The T1/T2 of 

cyclohexane provides a useful reference against which to benchmark the effective strength of 

surface interaction for a given molecular species across different catalytic systems because it does 

not have any specific functionality or molecular configuration, which promotes strong interaction 

with the solid surface. In this context, we note the work of Lanin et al.
25

, who used gas 

chromatography to study the adsorption of several classes of organic compounds over titanium 

dioxide and showed that alkanes exhibit lower adsorption energies compared to molecules with 

specific  functionality such as alkenes and oxygenated polar molecules. We also note that since 

alkanes are hydrophobic, the T1/T2 ratio of alkanes is expected to increase with increasing 

hydrophobicity of the solid surface.
26

  

 

 

 
* (a) indicates TiO2 anatase and (r) indicates TiO2 rutile  

 

Figure 4. Conversion and T1/T2 ratio values of methanol (solvent), 1,4-butanediol (reactant) and cyclohexane (reference 

compound) in different  catalysts. The relative error in the T1/T2 ratio is approximately 3%. The T1/T2 value for each of 

the bulk liquids (methanol, 1,4-butanediol and cyclohexane) is equal to one.  
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From the data presented in Figure 4 it is clear that the catalysts demonstrating lower conversion are 

characterised by a T1/T2 of the methanol solvent significantly greater than the T1/T2 of the 1,4-

butanediol reactant. As conversion increases, the value of T1/T2 associated with the solvent reduces 

relative to that of the reactant. The AuPd/SiO2 catalyst has the highest activity, followed closely by 

Pt/SiO2 and then Pd/Al2O3. The activity of Pd/ZrO2 and Pt/TiO2(r)
 
is relatively poor, whereas the 

Ru/SiO2 exhibited negligible activity for the oxidation of 1,4-butanediol. 

For a more complete analysis, we now consider the strength of surface interaction inferred from the 

relaxation time ratio of 1,4-butanediol (reactant)  
R21 TT , methanol (solvent)  

S21 TT , and 

cyclohexane (reference compound)  
ref21 TT  within the different catalysts and see how these values 

relate to the catalyst activity. It is also clear from Figure 4 that for the catalysts showing higher 

activity, i.e., AuPd/SiO2, Pt/SiO2, and Pd/Al2O3,  
R21 TT  >  

S21 TT . We interpret this comparison 

of relaxation time ratios as a greater strength of surface interaction for the 1,4-butanediol reactant 

than the methanol solvent. For Pd/TiO2(a), which shows an intermediate activity compared with the 

other catalysts,  
R21 TT  ~  

S21 TT  (similar strength of surface interaction for reactant and solvent). 

Conversely, for the catalysts showing poor activity the situation is reversed and  
R21 TT  <  

S21 TT  

(i.e., the solvent has a preferential interaction with the surface). In summary, the T1/T2 ratio provides 

a measure of the competitive adsorption of the reactant and solvent with the limiting cases 

 

 
R21 TT  >  

S21 TT   Adsorption of reactant favoured over solvent 

 
R21 TT  <  

S21 TT   Adsorption of solvent favoured over reactant 

 

The combination of NMR relaxation time ratios with catalytic activity data suggests that 

competitive adsorption of the solvent is an important factor in determining the catalyst activity for 

the reaction studied here. Preferential adsorption of the solvent molecules on the catalytic surface 

limits access of the reactant to active surface sites and hence reduces the catalytic activity. 

We now use the data in Figure 4 to calculate the ratio, β, of the T1/T2 values obtained for the 

reactant relative to the solvent;  β therefore indicates the strength of adsorption of the reactant (1,4-

butanediol) relative to the solvent (methanol): 

 

   
S12R21 TTTT .      (2) 
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This parameter enables a straightforward comparison between the surface interactions of the 

reactant and solvent in different catalytic materials; hence, it provides a way to quantify competitive 

adsorption between reactant and solvent. A plot of β against conversion is shown in Figure 5. In 

general, a good correlation (dotted line) is obtained between the catalyst activity and the relative 

adsorption strength of the reactant. This correlation provides further evidence that competitive 

adsorption plays an important role in determining the catalytic activity. We note that the only 

catalyst that provides a significant deviation from this correlation is the bimetallic AuPd/SiO2. We 

suggest that the presence of two metal species provides an additional influence in the reaction, such 

as O2 uptake, resulting in less conversion than expected based solely on the preferential adsorption 

of the reactant compared to the solvent. Notwithstanding, the qualitative nature of our correlation is 

retained: the catalyst with the highest affinity for the reactant also provides the greatest conversion, 

which suggests that competitive adsorption does indeed play a crucial role in determining catalytic 

conversions for this reaction. 

 

Figure 5. Plot of β, as defined in Equation (2) against catalytic conversion. Note that (a) indicates TiO2 anatase and (r) 

indicates TiO2 rutile. The dotted line is a guide to the eye.  
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It is interesting to compare the behaviour of Pt/SiO2, being the most active catalyst that obeys our 

empirical correlation, with Ru/SiO2 which is the least active. For Pt/SiO2 the T1/T2 ratio of the 

solvent is lower than that of the reactant, implying that the adsorption of 1,4-butanediol is highly 

favoured compared to that of the methanol solvent.  

The results presented in Figure 5 suggest that NMR relaxation time analysis of reactant and solvent 

interacting with the catalyst surface can explain catalyst conversion on the basis of competitive 

adsorption of reactant and solvent species. This approach may be useful in understanding the 

behaviour of other systems. For example, Bianchi and co-workers
3
 studied the liquid-phase catalytic 

oxidation of ethylene glycol in water (solvent) and reported that the type of support is important for 

determining catalytic performance. They also suggested that the presence of the solvent can 

markedly modify the reaction pathway through interaction with the solid surface of the catalyst. 

Ongoing work is exploring the extent to which NMR relaxometry can yield insight into catalyst 

selectivity.  

 

Conclusions 

The liquid-phase oxidation of 1,4-butanediol by molecular oxygen in methanol as solvent has been 

studied over a series of supported-metal catalysts. Catalytic conversion has been compared with the 

adsorption characteristics of reactant and solvents, inferred by NMR relaxation time ratios. The 

competitive adsorption of reactant and solvent on the catalyst surface is characterised and seen to 

correlate with conversion. A higher interaction strength of the reactant with the surface, compared 

to the solvent, is associated with increased conversion. Conversely, when the solvent interaction 

with the surface is stronger than that of the reactant, conversion decreases, most likely due to 

solvent molecules blocking access of reactant molecules to the surface. Whilst we have shown 

aspects of this effect previously
21

, this work demonstrates that the NMR relaxation time analysis 

approach can be applied to evaluate competitive adsorption processes across a range of catalytic 

materials for the same chemical conversion. This NMR method is particularly useful because it 

provides an in situ measurement of molecular adsorption strengths and therefore has the potential to 

become a useful tool for both solvent and catalyst selection for a particular conversion.  
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