206 research outputs found
Characterization of an aryl piperazine/2-hydroxypropyl-β-cyclodextrin association, a complex with antidiabetic potential
This study explores the molecular association between 4-(thiophen-2-yl)-1-(4-(4-(trifluoromethyl)phenyl)piperazin-1-yl)butan-1-one (RTC1), an antidiabetic compound recently reported by our research group with challenging aqueous solubility, and 2-hydroxypropyl-β-cyclodextrin (HPBCD). The formation of a RTC1/HPBCD complex resulted in improved solubility. A phase-solubility diagram was used to determine the complex stability constant and stoichiometric ratio. 2D 1H NMR spectroscopy was utilized to study the molecular interaction between RTC1 and HPBCD in the complex. Differential scanning calorimetry and scanning electron microscopy was also employed to confirm complex formation. In vitro biological evaluation, using a glucose uptake assay, showed that the homogeneous RTC1/HPBCD complex solution showed the same activity to that of RTC1 alone, with no reduction in activity due to the presence of HPBCD
GPR21 Inhibition Increases Glucose-Uptake in HepG2 Cells
GPR21 is a constitutively active, orphan, G-protein-coupled receptor, with in vivo studies suggesting its involvement in the modulation of insulin sensitivity. However, its precise contribution is not fully understood. As the liver is both a major target of insulin signalling and critically involved in glucose metabolism, the aim of this study was to examine the role of GPR21 in the regulation of glucose uptake and production in human hepatocytes. In particular, HepG2 cells, which express GPR21, were adopted as cellular models. Compared with untreated cells, a significant increase in glucose uptake was measured in cells treated with siRNA to downregulate GPR21 expression or with the GPR21-inverse agonist, GRA2. Consistently, a significantly higher membrane translocation of GLUT-2 was measured under these conditions. These effects were accompanied by an increased ratio of phAKT(Ser473)/tot-AKT and phGSK-3β(Ser9)/tot-GSK-3β, thus indicating a marked activation of the insulin signalling pathway. Moreover, a significant reduction in ERK activation was observed with GPR21 inhibition. Collectively, these results indicate that GPR21 mediates the negative effects on glucose uptake by the liver cells. In addition, they suggest that the pharmacological inhibition of GPR21 could be a novel strategy to improve glucose homeostasis and counteract hepatic insulin resistance
GSTT2 promoter polymorphisms and colorectal cancer risk
BACKGROUND: Glutathione S-transferases are a group of enzymes that participate in detoxification and defense mechanisms against toxic carcinogens and other compounds. These enzymes play an important role in human carcinogenesis. In the present study, we sought to determine whether GSTT2 promoter single nucleotide polymorphisms (SNPs) are associated with colorectal cancer risk. METHODS: A total of 436 colorectal cancer patients and 568 healthy controls were genotyped for three GSTT2 promoter SNPs (-537G>A, -277T>C and -158G>A), using real-time TaqMan assay and direct sequencing. An electrophoretic mobility shift assay (EMSA) was performed to determine the effects of polymorphisms on protein binding to the GSTT2 promoter. RESULTS: The -537A allele (-537G/A or A/A) was significantly associated with colorectal cancer risk (OR = 1.373, p = 0.025), while the -158A allele (-158G/A or A/A) was involved in protection against colorectal cancer (OR = 0.539, p = 0.032). Haplotype 2 (-537A, -277T, -158G) was significantly associated with colorectal cancer risk (OR = 1.386, p = 0.021), while haplotype 4 (-537G, -277C, -158A) protected against colorectal cancer (OR = 0.539, p = 0.032). EMSA data revealed lower promoter binding activity in the -537A allele than its -537G counterpart. CONCLUSION: Our results collectively suggest that SNPs and haplotypes of the GSTT2 promoter region are associated with colorectal cancer risk in the Korean population
A Common Polymorphism in the Promoter Region of the TNFSF4 Gene Is Associated with Lower Allele-Specific Expression and Risk of Myocardial Infarction
BACKGROUND: The TNFSF4/TNFRSF4 system, along with several other receptor-ligand pairs, is involved in the recruitment and activation of T-cells and is therefore tentatively implicated in atherosclerosis and acute coronary syndromes. We have previously shown that genetic variants in TNFSF4 are associated with myocardial infarction (MI) in women. This prompted functional studies of TNFSF4 expression. METHODS AND RESULTS: Based on a screening of the TNFSF4 genomic region, a promoter polymorphism (rs45454293) and a haplotype were identified, conceivably involved in gene regulation. The rs45454293T-allele, in agreement with the linked rs3850641G-allele, proved to be associated with increased risk of MI in women. Haplotype-specific chromatin immunoprecipitation of activated polymerase II, as a measure of transcriptional activity in vivo, suggested that the haplotype including the rs45454293 and rs3850641 polymorphisms is functionally important, the rs45454293T- and rs3850641G-alleles being associated with lower transcriptional activity in cells heterozygous for both polymorphisms. The functional role of rs45454293 on transcriptional levels of TNFSF4 was clarified by luciferase reporter assays, where the rs45454293T-allele decreased gene expression when compared with the rs45454293C-allele, while the rs3850641 SNP did not have any effect on TNFSF4 promoter activity. Electromobility shift assay showed that the rs45454293 polymorphism, but not rs3850641, affects the binding of nuclear factors, thus suggesting that the lower transcriptional activity is attributed to binding of one or more transcriptional repressor(s) to the T-allele. CONCLUSIONS: Our data indicate that the TNFSF4 rs45454293T-allele is associated with lower TNFSF4 expression and increased risk of MI
G protein–coupled receptor 21 in macrophages: An in vitro study
GPR21 is an orphan and constitutively active receptor belonging to the superfamily of G-Protein Coupled Receptors (GPCRs). GPR21 couples to the Gq family of G proteins and is expressed in macrophages. Studies of GPR21 knock-out mice indicated that GPR21 may be involved in promoting macrophage migration. The aim of this study was to evaluate the role of GPR21 in human macrophages, analyzing (i) its involvement in cell migration and cytokine release and (ii) the consequence of its pharmacological inhibition by using the inverse agonist GRA2. THP-1 cells were activated and differentiated into either M1 or M2 macrophages. GPR21 expression was evaluated at gene and protein level, the signalling pathway was investigated by an IP1 assay, and cytokine release by ELISA. Cell migration was detected by the Boyden chamber migration assay, performed on macrophages derived from both the THP-1 cell line and human peripheral blood monocytes. In addition, we compared the effect of the pharmacological inhibition of GPR21 with the effect of the treatment with a specific GPR21 siRNA to downregulate the receptor expression, thus confirming that GRA2 acts as an inverse agonist of GPR21. GRA2 does not affect cell viability at the tested concentrations, but significantly reduces the release of TNF-α and IL-1β from M1 macrophages. The analysis of the migratory ability highlighted opposite effects of GRA2 on M1 and M2 macrophages since it decreased M1, while it promoted M2 cell migration. Therefore, the pharmacological inhibition of GPR21 could be of interest for pathological conditions characterized by low grade chronic inflammation
Uniform Approximation Is More Appropriate for Wilcoxon Rank-Sum Test in Gene Set Analysis
Gene set analysis is widely used to facilitate biological interpretations in the analyses of differential expression from high throughput profiling data. Wilcoxon Rank-Sum (WRS) test is one of the commonly used methods in gene set enrichment analysis. It compares the ranks of genes in a gene set against those of genes outside the gene set. This method is easy to implement and it eliminates the dichotomization of genes into significant and non-significant in a competitive hypothesis testing. Due to the large number of genes being examined, it is impractical to calculate the exact null distribution for the WRS test. Therefore, the normal distribution is commonly used as an approximation. However, as we demonstrate in this paper, the normal approximation is problematic when a gene set with relative small number of genes is tested against the large number of genes in the complementary set. In this situation, a uniform approximation is substantially more powerful, more accurate, and less intensive in computation. We demonstrate the advantage of the uniform approximations in Gene Ontology (GO) term analysis using simulations and real data sets
Phylogeography of a Land Snail Suggests Trans-Mediterranean Neolithic Transport
Background: Fragmented distribution ranges of species with little active dispersal capacity raise the question about their place of origin and the processes and timing of either range fragmentation or dispersal. The peculiar distribution of the land snail Tudorella sulcata s. str. in Southern France, Sardinia and Algeria is such a challenging case. Methodology: Statistical phylogeographic analyses with mitochondrial COI and nuclear hsp70 haplotypes were used to answer the questions of the species' origin, sequence and timing of dispersal. The origin of the species was on Sardinia. Starting from there, a first expansion to Algeria and then to France took place. Abiotic and zoochorous dispersal could be excluded by considering the species' life style, leaving only anthropogenic translocation as parsimonious explanation. The geographic expansion could be dated to approximately 8,000 years before present with a 95% confidence interval of 10,000 to 3,000 years before present. Conclusions: This period coincides with the Neolithic expansion in the Western Mediterranean, suggesting a role of these settlers as vectors. Our findings thus propose that non-domesticated animals and plants may give hints on the direction and timing of early human expansion routes
Functional analysis of the C-reactive protein (CRP) gene -717A>G polymorphism associated with coronary heart disease
<p>Abstract</p> <p>Background</p> <p>Atherosclerosis underlies the major pathophysiological mechanisms of coronary heart disease (CHD), and inflammation contributes to all phases of atherosclerosis. C-reactive protein (CRP), a sensitive, but nonspecific marker of inflammation has been shown to play proatherogenic roles in the process of atherosclerosis. Our previous report showed that rs2794521 (-717A>G), located in the promoter of the CRP gene, was independently associated with CHD in Chinese subjects. In the present study, we tried to investigate the biological significance of this genetic variation <it>in vitro</it>.</p> <p>Methods</p> <p>The influence of G to A substitution at the site of rs2794521 on the transcriptional activity of the promoter of the CRP gene was assessed by luciferase reporter assay, and protein binding to the site of rs2794521 was detected by EMSA assay.</p> <p>Results</p> <p>The G to A exchange at the site of rs2794521 resulted in an increased transcriptional activity of the promoter of CRP gene, and glucocorticoid receptor (GR) protein factor bound drastically differently to the A and G alleles at the site of rs2794521.</p> <p>Conclusion</p> <p>These results provided functional evidence supporting the association of the SNP rs2794521 of the CRP gene with CHD probably through regulating the expression level of CRP by different variations of rs2794521.</p
Electronic states and phases of KxC60 from photoemission and X-ray absorption spectroscopy
HIGH-resolution photoemission and soft X-ray absorption spectroscopies have provided valuable information on the electronic structure near the Fermi energy in the superconducting copper oxide compounds 1-4, helping to constrain the possible mechanisms of superconductivity. Here we describe the application of these techniques to K(x)C60, found recently to be superconducting below 19.3 K for x almost-equal-to 3 (refs 5-7). The photoemission and absorption spectra as a function of x can be fitted by a linear combination of data from just three phases, C60, K3C60, and K6C60, indicating that there is phase separation in our samples. The photoemission spectra clearly show a well defined Fermi edge in the K3C60 phase with a density of states of 5.2 x 10(-3) electrons eV-1 angstrom-3 and an occupied-band width of 1.2 eV, suggesting that this phase may be a weakly coupled BCS-like (conventional) superconductor. The C1s absorption spectra show large non-rigid-band shifts between the three phases with half and complete filling, in the K3C60 and K6C60 phases respectively, of the conduction band formed from the lowest unoccupied molecular orbital of C60. These observations clearly demonstrate that the conduction band has C 2p character. The non-rigid-band shift coupled with the anomalous occupied-band width implies that there is significant mixing of the electronic states of K and C60 in the superconducting phase
Accelerating Haplotype-Based Genome-Wide Association Study Using Perfect Phylogeny and Phase-Known Reference Data
The genome-wide association study (GWAS) has become a routine approach for mapping disease risk loci with the advent of large-scale genotyping technologies. Multi-allelic haplotype markers can provide superior power compared with single-SNP markers in mapping disease loci. However, the application of haplotype-based analysis to GWAS is usually bottlenecked by prohibitive time cost for haplotype inference, also known as phasing. In this study, we developed an efficient approach to haplotype-based analysis in GWAS. By using a reference panel, our method accelerated the phasing process and reduced the potential bias generated by unrealistic assumptions in phasing process. The haplotype-based approach delivers great power and no type I error inflation for association studies. With only a medium-size reference panel, phasing error in our method is comparable to the genotyping error afforded by commercial genotyping solutions
- …