91 research outputs found

    Recent emergence and worldwide spread of the red tomato spider mite, [i]Tetranychus evansi[/i]: genetic variation and multiple cryptic invasions

    Get PDF
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699Plant biosecurity is increasingly challenged by emerging crop pests. The spider mite Tetranychus evansi has recently emerged as a new threat to solanaceous crops in Africa and the Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures. Mitochondrial (868 bp of COI) and nuclear (1,137 bp of ITS) loci were analyzed in T. evansi samples spanning the current geographical distribution to study the earliest stages of the invasive process. The two sets of markers separate the samples into two main clades that are only present together in South America and Southern Europe. The highest COI diversity was found in South America, consistent with the hypothesis of a South American origin of T. evansi. Among the invaded areas, the Mediterranean region displayed a high level of genetic diversity similar to that present in South America, that is likely the result of multiple colonization events. The invasions of Africa and Asia by T. evansi are characterized by a low genetic variation associated with distinct introductions. Genetic data demonstrate two different patterns of invasions: (1) populations in the Mediterranean basin that are a result of multiple cryptic introductions and (2) emerging invasions of Africa and Asia, each likely the result of propagules from one or limited sources. The recent invasions of T. evansi illustrate not only the importance of human activities in the spread of agricultural pests, but also the limits of international quarantine procedures, particularly for cryptic invasion

    Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    Get PDF
    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies

    Community Assembly on Isolated Islands: Macroecology Meets Evolution

    Get PDF
    Aim Understanding how ecological and evolutionary processes together determine patterns of biodiversity remains a central aim in biology.Guided by ecological theory, we use data from multiple arthropod lineages across the Hawaiian archipelago to explore the interplay between ecological (population dynamics, dispersal, trophic interactions) and evolutionary (genetic structuring, adaptation, speciation, extinction) processes. Our goal is to show how communities develop from the dynamic feedbacks that operate at different temporal and spatial scales. Location The Hawaiian islands (19–22° N, 155–160° W). Methods We synthesize genetic data from selected arthropods across the Hawaiian archipelago to determine the relative role of dispersal and in situ differentiation across the island chronosequence. From four sites on three high islands with geological ages ranging from 1 Myr. Herbivore–plant communities only transiently achieve statistical steady state during assembly, presumably due to incomplete assembly from dispersal in the early stages, and the increasing influence of island ontogeny on older islands

    Multimodal Stimulation of Colorado Potato Beetle Reveals Modulation of Pheromone Response by Yellow Light

    Get PDF
    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms

    Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago

    Get PDF
    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation

    Phylogeography of a successful aerial disperser: the golden orb spider Nephila on Indian Ocean islands

    Get PDF
    Abstract Background The origin and diversification patterns of lineages across the Indian Ocean islands are varied due to the interplay of the complex geographic and geologic island histories, the varying dispersal abilities of biotas, and the proximity to major continental landmasses. Our aim was to reconstruct phylogeographic history of the giant orbweaving spider (Nephila) on western Indian Ocean islands (Madagascar, Mayotte, Réunion, Mauritius, Rodrigues), to test its origin and route of dispersal, and to examine the consequences of good dispersal abilities for colonization and diversification, in comparison with related spiders (Nephilengys) inhabiting the same islands, and with other organisms known for over water dispersal. We used mitochondrial (COI) and nuclear (ITS2) markers to examine phylogenetic and population genetic patterns in Nephila populations and species. We employed Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, respectively, and calculated genetic distances, fixation indices, and estimated clade ages under a relaxed clock model. Results Our results suggest an African origin of Madagascar Nephila inaurata populations via Cenozoic dispersal, and the colonization of the Mascarene islands from Madagascar. We find evidence of gene flow across Madagascar and Comoros. The Mascarene islands share a common 'ancestral' COI haplotype closely related to those found on Madagascar, but itself absent, or as yet unsampled, from Madagascar. Each island has one or more unique haplotypes related to the ancestral Mascarene haplotype. The Indian Ocean N. inaurata are genetically distinct from the African populations. Conclusions Nephila spiders colonized Madagascar from Africa about 2.5 (0.6-5.3) Ma. Our results are consistent with subsequent, recent and rapid, colonization of all three Mascarene islands. On each island, however, we detected unique haplotypes, consistent with a limited gene flow among the islands subsequent to colonization, a scenario that might be referred to as speciation in progress. However, due to relatively small sample sizes, we cannot rule out that we simply failed to collect Mascarene haplotypes on Madagascar, a scenario that might imply human mediated dispersal. Nonetheless, the former interpretation better fits the available data and results in a pattern similar to the related Nephilengys. Nephilengys, however, shows higher genetic divergences with diversification on more remote islands. That the better disperser of the two lineages, Nephila, has colonized more islands but failed to diversify, demonstrates how dispersal ability can shape both the patterns of colonization and formation of species across archipelagos.</p

    Contribution of a Common Variant in the Promoter of the 1-α-Hydroxylase Gene (CYP27B1) to Fracture Risk in the Elderly

    Get PDF
    CYP27B1 encodes mitochondrial 1α-hydroxylase, which converts 25-hydroxyvitamin D to its active 1,25-dihydroxylated metabolite. We tested the hypothesis that common variants in the CYP27B1 promoter are associated with fracture risk. The study was designed as a population-based genetic association study, which involved 153 men and 596 women aged 65–101 years, who had been followed for 2.2 years (range 0.1–5.5) between 1999 and 2006. During the follow-up period, the incidence of fragility fractures was ascertained. Bone ultrasound attenuation (BUA) was measured in all individuals, as were serum 25-hydroxyvitamin D and PTH concentrations; 86% subjects had vitamin D insufficiency. Genotypes were determined for the –1260C>A (rs10877012) and +2838T>C (rs4646536) CYP27B1 polymorphisms. A reporter gene assay was used to assess functional expression of the –1260C>A CYP27B1 variants. The association between genotypes and fracture risk was analyzed by Cox’s proportional hazards model. We found that genotypic distribution of CYP27B1 –1260 and CYP27B1 +2838 polymorphisms was consistent with the Hardy-Weinberg equilibrium law. The two polymorphisms were in high linkage disequilibrium, with D′ = 0.96 and r2 = 0.94. Each C allele of the CYP27B1 –1260 polymorphism was associated with increased risk of fracture (hazard ratio = 1.34, 95% CI 1.03–1.73), after adjustment for age, sex, number of falls, and BUA. In transient transfection studies, a reporter gene downstream of the –1260(A)-containing promoter was more highly expressed than that containing the C allele. These data suggest that a common but functional variation within the CYP27B1 promoter gene is associated with fracture risk in the elderly

    Protocol of the baseline assessment for the Environments for Healthy Living (EHL) Wales cohort study

    Get PDF
    Background Health is a result of influences operating at multiple levels. For example, inadequate housing, poor educational attainment, and reduced access to health care are clustered together, and are all associated with reduced health. Policies which try to change individual people's behaviour have limited effect when people have little control over their environment. However, structural environmental change and an understanding of the way that influences interact with each other, has the potential to facilitate healthy choices irrespective of personal resources. The aim of Environments for Healthy Living (EHL) is to investigate the impact of gestational and postnatal environments on health, and to examine where structural change can be brought about to optimise health outcomes. The baseline assessment will focus on birth outcomes and maternal and infant health. Methods/Design EHL is a longitudinal birth cohort study. We aim to recruit 1000 pregnant women in the period April 2010 to March 2013. We will examine the impact of the gestational environment (maternal health) and the postnatal environment (housing and neighbourhood conditions) on subsequent health outcomes for the infants born to these women. Data collection will commence during the participants' pregnancy, from approximately 20 weeks gestation. Participants will complete a questionnaire, undergo anthropometric measurements, wear an accelerometer, compile a food diary, and have environmental measures taken within their home. They will also be asked to consent to having a sample of umbilical cord blood taken following delivery of their baby. These data will be complemented by routinely collected electronic data such as health records from GP surgeries, hospital admissions, and child health and development records. Thereafter, participants will be visited annually for follow-up of subsequent exposures and child health outcomes. Discussion The baseline assessment of EHL will provide information concerning the impact of gestational and postnatal environments on birth outcomes and maternal and infant health. The findings can be used to inform the development of complex interventions targeted at structural, environmental factors, intended to reduce ill-health. Long-term follow-up of the cohort will focus on relationships between environmental exposures and the later development of adverse health outcomes, including obesity and diabetes

    NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs.</p> <p>Methods</p> <p>Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses.</p> <p>Results</p> <p>Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3 and HEY1 was detected in primary TLX1/3 positive T-ALL cells corresponding to the cell line data.</p> <p>Conclusion</p> <p>Identification and analysis of MSX2 in hematopoietic cells implicates a modulatory role via NOTCH3-signaling in early T-cell differentiation. Our data suggest that reduction of NOTCH3-signaling by physiological downregulation of MSX2 expression during T-cell development is abrogated by ectopic expression of oncogenic NKLs, substituting MSX2 function.</p

    Breeding systems in Tolpis (Asteraceae) in the Macaronesian islands: the Azores, Madeira and the Canaries

    Get PDF
    Plants on oceanic islands often originate from self-compatible (SC) colonizers capable of seed set by self fertilization. This fact is supported by empirical studies, and is rooted in the hypothesis that one (or few) individuals could find a sexual population, whereas two or more would be required if the colonizers were self-incompatible (SI). However, a SC colonizer would have lower heterozygosity than SI colonizers, which could limit radiation and diver sification of lineages following establishment. Limited evidence suggests that several species-rich island lineages in the family Asteraceae originated from SI colonizers with some ‘‘leakiness’’ (pseudo-self-compatibility, PSC) such that some self-seed could be produced. This study of Tolpis (Asteraceae) in Macaronesia provides first reports of the breeding system in species from the Azores and Madeira, and additional insights into variation in Canary Islands. Tolpis from the Azores and Madeira are predominately SI but with PSC. This study suggests that the breeding sys tems of the ancestors were either PSC, possibly from a single colonizer, or from SI colonizers by multiple dis seminules either from a single or multiple dispersals. Long distance colonists capable of PSC combine the advantages of reproductive assurance (via selfing) in the establishment of sexual populations from even a single colonizer with the higher heterozygosity resulting from its origin from an outcrossed source population. Evolution of Tolpis on the Canaries and Madeira has generated diversity in breeding systems, including the origin of SC. Macaronesian Tolpis is an excellent system for studying breeding system evolution in a small, diverse lineage.info:eu-repo/semantics/publishedVersio
    corecore