51 research outputs found

    The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: A randomized controlled trial [ISRCTN87413556]

    Get PDF
    BACKGROUND: The management of burn injuries is reported as painful, distressing and a cause of anxiety in children and their parents. Child's and parents' pain and anxiety, often contributes to extended time required for burns management procedures, in particular the process of changing dressings. The traditional method of pharmacologic analgesia is often insufficient to cover the burnt child's pain, and it can have deleterious side effects [1,2]. Intervention with Virtual Reality (VR) games is based on distraction or interruption in the way current thoughts, including pain, are processed by the brain. Research on adults supports the hypothesis that virtual reality has a positive influence on burns pain modulation. METHODS: This study investigates whether playing a virtual reality game, decreases procedural pain in children aged 5–18 years with acute burn injuries. The paper reports on the findings of a pilot study, a randomised trial, in which seven children acted as their own controls though a series of 11 trials. Outcomes were pain measured using the self-report Faces Scale and findings of interviews with parent/carer and nurses. RESULTS: The average pain scores (from the Faces Scale) for pharmacological analgesia only was, 4.1 (SD 2.9), while VR coupled with pharmacological analgesia, the average pain score was 1.3 (SD 1.8) CONCLUSION: The study provides strong evidence supporting VR based games in providing analgesia with minimal side effects and little impact on the physical hospital environment, as well as its reusability and versatility, suggesting another option in the management of children's acute pain

    Comparative Proteomic Analysis of Aedes aegypti Larval Midgut after Intoxication with Cry11Aa Toxin from Bacillus thuringiensis

    Get PDF
    Cry toxins produced by Bacillus thuringiensis bacteria are environmentally safe alternatives to control insect pests. They are pore-forming toxins that specifically affect cell permeability and cellular integrity of insect-midgut cells. In this work we analyzed the defensive response of Aedes aegypti larva to Cry11Aa toxin intoxication by proteomic and functional genomic analyses. Two dimensional differential in-gel electrophoresis (2D-DIGE) was utilized to analyze proteomic differences among A. aegypti larvae intoxicated with different doses of Cry11Aa toxin compared to a buffer treatment. Spots with significant differential expression (p<0.05) were then identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing 18 up-regulated and seven down-regulated proteins. The most abundant subcategories of differentially expressed proteins were proteins involved in protein turnover and folding, energy production, and cytoskeleton maintenance. We selected three candidate proteins based on their differential expression as representatives of the different functional categories to perform gene silencing by RNA interference and analyze their functional role. The heat shock protein HSP90 was selected from the proteins involved in protein turnover and chaperones; actin, was selected as representative of the cytoskeleton protein group, and ATP synthase subunit beta was selected from the group of proteins involved in energy production. When we affected the expression of ATP synthase subunit beta and actin by silencing with RNAi the larvae became hypersensitive to toxin action. In addition, we found that mosquito larvae displayed a resistant phenotype when the heat shock protein was silenced. These results provide insight into the molecular components influencing the defense to Cry toxin intoxication and facilitate further studies on the roles of identified genes

    Epithelial Cells Derived from Swine Bone Marrow Express Stem Cell Markers and Support Influenza Virus Replication In Vitro

    Get PDF
    The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4) and stage-specific embryonic antigen-1 (SSEA-1), the alveolar stem cell marker Clara cell secretory protein (Ccsp), and the epithelial cell markers pan-cytokeratin (Pan-K), cytokeratin-18 (K-18), and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases

    Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.

    Get PDF
    corecore