25 research outputs found

    Expertise differences in anticipatory judgements during a temporally and spatially occluded dynamic task

    Get PDF
    There is contradictory evidence surrounding the role of critical cues in the successful anticipation of penalty kick outcome. In the current study, skilled and less-skilled soccer goalkeepers were required to anticipate spatially (full body; hip region) and temporally (–160 ms, –80 ms before, foot–ball contact) occluded penalty kicks. The skilled group outperformed the less-skilled group in all conditions. Both groups performed better in the full body, compared to hip region condition. Later temporal occlusion conditions were associated with increased performance in the correct response and correct side analysis, but not for correct height. These data suggest that there is enough postural information from the hip region for skilled goalkeepers to make highly accurate predictions of penalty kick direction, however, other regions are needed in order to make predictions of height. These data demonstrate the evolution of cues over time and have implications for anticipation training

    Fetal leg posture in uncomplicated breech and cephalic pregnancies

    Get PDF
    Background The objective of our study was to determine differences in prenatal leg posture development between breech and cephalic-born babies. Materials and methods Ten healthy fetuses in breech and ten healthy fetuses in cephalic presentation were observed by means of weekly ultrasounds from 33 weeks gestational age until birth to assess leg posture. Results The breech fetuses showed a clear preference for an extended leg position; they spent significantly more time with their knees in extension than the cephalic fetuses (p<0.001). The cephalic fetuses showed significantly more leg-crossing than the breech fetuses (p<0.01). For both findings, no significant change over time could be observed in either group. Conclusion These findings show that the intra-uterine position does influence the fetal postural and motor development. However, it seems unlikely that intra-uterine movement restriction can solely be held accountable for the observed differences in leg position between breech and cephalic fetuses. Β© 2008 The Author(s)

    Catching a Ball at the Right Time and Place: Individual Factors Matter

    Get PDF
    Intercepting a moving object requires accurate spatio-temporal control. Several studies have investigated how the CNS copes with such a challenging task, focusing on the nature of the information used to extract target motion parameters and on the identification of general control strategies. In the present study we provide evidence that the right time and place of the collision is not univocally specified by the CNS for a given target motion; instead, different but equally successful solutions can be adopted by different subjects when task constraints are loose. We characterized arm kinematics of fourteen subjects and performed a detailed analysis on a subset of six subjects who showed comparable success rates when asked to catch a flying ball in three dimensional space. Balls were projected by an actuated launching apparatus in order to obtain different arrival flight time and height conditions. Inter-individual variability was observed in several kinematic parameters, such as wrist trajectory, wrist velocity profile, timing and spatial distribution of the impact point, upper limb posture, trunk motion, and submovement decomposition. Individual idiosyncratic behaviors were consistent across different ball flight time conditions and across two experimental sessions carried out at one year distance. These results highlight the importance of a systematic characterization of individual factors in the study of interceptive tasks

    Keeping an eye on noisy movements: On different approaches to perceptual-motor skill research and training

    Get PDF
    Contemporary theorising on the complementary nature of perception and action in expert performance has led to the emergence of different emphases in studying movement coordination and gaze behaviour. On the one hand, coordination research has examined the role that variability plays in movement control, evidencing that variability facilitates individualised adaptations during both learning and performance. On the other hand, and at odds with this principle, the majority of gaze behaviour studies have tended to average data over participants and trials, proposing the importance of universal 'optimal' gaze patterns in a given task, for all performers, irrespective of stage of learning. In this article, new lines of inquiry are considered with the aim of reconciling these two distinct approaches. The role that inter- and intra-individual variability may play in gaze behaviours is considered, before suggesting directions for future research

    Individual Differences and Metacognitive Knowledge of Visual Search Strategy

    Get PDF
    A crucial ability for an organism is to orient toward important objects and to ignore temporarily irrelevant objects. Attention provides the perceptual selectivity necessary to filter an overwhelming input of sensory information to allow for efficient object detection. Although much research has examined visual search and the β€˜template’ of attentional set that allows for target detection, the behavior of individual subjects often reveals the limits of experimental control of attention. Few studies have examined important aspects such as individual differences and metacognitive strategies. The present study analyzes the data from two visual search experiments for a conjunctively defined target (Proulx, 2007). The data revealed attentional capture blindness, individual differences in search strategies, and a significant rate of metacognitive errors for the assessment of the strategies employed. These results highlight a challenge for visual attention studies to account for individual differences in search behavior and distractibility, and participants that do not (or are unable to) follow instructions

    Vision and visual history in elite-/near-elite level cricketers and rugby-league players

    Get PDF
    Background: The importance of optimal and/or superior vision for participation in high-level sport remains the subject of considerable clinical research interest. Here we examine the vision and visual history of elite/near-elite cricketers and rugby-league players. Methods: Stereoacuity (TNO), colour vision, and distance (with/without pinhole) and near visual acuity (VA) were measured in two cricket squads (elite/international-level, female, n=16; near-elite, male, n=23) and one professional rugby-league squad (male, n=20). Refractive error was determined, and details of any correction worn and visual history were recorded. Results: Overall, 63% had their last eye-examination within 2 years. However, some had not had an eye examination for 5 years, or had never had one (near-elite-cricketers: 30%; rugby-league players: 15%; elite-cricketers: 6%). Comparing our results for all participants to published data for young, optimally-corrected, non-sporting adults, distance VA was ~1 line of letters worse than expected. Adopting Ξ±=0.01, the deficit in distance-VA deficit was significant, but only for elite-cricketers (p0.02 for all comparisons). On average, stereoacuity was better than in young adults, but only in elite-cricketers (p<0.001; p=0.03, near-elite-cricketers; p=0.47, rugby-league -players). On-field visual issues were present in 27% of participants, and mostly (in 75% of cases) comprised uncorrected ametropia. Some cricketers (near-elite: 17.4%; elite: 38%) wore refractive correction during play but no rugby-league player did. Some individuals with prescribed correction choose not to wear it when playing. Conclusion: Aside from near stereoacuity in elite-cricketers, these basic visual abilities were not better than equivalent, published data for optimally-corrected adults. 20-25% exhibited sub-optimal vision, suggesting that the clearest possible vision might not be critical for participation at the highest levels in the sports of cricket or rugby-league. Although vision could be improved in a sizeable proportion of our sample, the impact of correcting these, mostly subtle, refractive anomalies on playing performance is unknown

    Saving penalties, scoring penalties

    No full text

    Manual tracking in three dimensions.

    Get PDF
    Contains fulltext : 50618.pdf (preprint version ) (Open Access) Contains fulltext : 50618.pdf (publisher's version ) (Closed access)Little is known about the manual tracking of targets that move in three dimensions. In the present study, human subjects followed, with the tip of a hand-held pen, a virtual target moving four times (period 5 s) around a novel, unseen path. Two basic types of target paths were used: a peanut-shaped Cassini ellipse and a quasi-spherical shape where four connected semicircles lay in orthogonal planes. The quasi-spherical shape was presented in three different sizes, and the Cassini shape was varied in spatial orientation and by folding it along one of the three bend axes. During the first cycle of Cassini shapes, the hand lagged behind the target by about 150 ms on average, which decreased to 100 ms during the last three cycles. Tracking performance gradually improved during the first 3 s of the first cycle and then stabilized. Tracking was especially good during the smooth, planar sections of the shapes, and time lag was significantly shorter when the tracking of a low-frequency component was compared to performance at a higher frequency (-88 ms at 0.2 Hz vs. -101 ms at 0.6 Hz). Even after the appropriate adjustment of the virtual target path to a virtual shape tracing condition, tracking in depth was poor compared to tracking in the frontal plane, resulting in a flattening of the hand path. In contrast to previous studies where target trajectories were linear or sinusoidal, these complex trajectories may have involved estimation of the overall shape, as well as prediction of target velocity
    corecore