403 research outputs found

    The Structural Colors of Photonic Glasses

    Get PDF
    The color of materials usually originates from a combination of wavelength-dependent absorption and scattering. Controlling the color without the use of absorbing dyes is of practical interest, not only because of undesired bleaching properties of dyes but also regarding minimization of environmental and health issues. Color control without dyes can be achieved by tuning the material's scattering properties in controlling size and spatial arrangement of scatterers. Herein, calibrated photonic glasses (PGs), which are isotropic materials made by random aggregation of nonabsorbing, monodisperse colloidal polystyrene spheres, are used to generate a wide spectral range of purely structural, angular-independent colors. Experimental reflectance spectra for different sized spheres compare well with a recent theoretical model, which establishes the latter as a tool for color mapping in PGs. It allows to determine the range of visible colors accessible in PGs as function of size, packing fraction, and refractive index of scatterers. It also predicts color saturation on top of the white reflectance as function of the sample's optical thickness. Blue, green, and red are obtained even with low index, while saturated green, cyan, yellow, and magenta can be reached in higher index PGs over several orders of magnitude of sample thickness.Deutsche Forschungsgemeinschaft. Grant Number: SFB1214 Swiss National Science Foundation. Grant Number: 200020M_162846 Alexander von Humboldt Foundatio

    Extended duration of the detectable stage by adding HPV test in cervical cancer screening

    Get PDF
    The human papillomavirus test (HPV) test could improve the (cost-) effectiveness of cervical screening by selecting women with a very low risk for cervical cancer during a long period. An analysis of a longitudinal study suggests that women with a negative Pap smear and a negative HPV test have a strongly reduced risk of developing cervical abnormalities in the years following the test, and that HPV testing lengthens the detectable stage by 2-5 years, compared to Pap smear detection alone

    Smoking in asthma is associated with elevated levels of corticosteroid resistant sputum cytokines—an exploratory study

    Get PDF
    <p>Background: Current cigarette smoking is associated with reduced acute responses to corticosteroids and worse clinical outcomes in stable chronic asthma. The mechanism by which current smoking promotes this altered behavior is currently unclear. Whilst cytokines can induce corticosteroid insensitivity in-vitro, how current and former smoking affects airway cytokine concentrations and their responses to oral corticosteroids in stable chronic asthma is unclear.</p> <p>Objectives: To examine blood and sputum cytokine concentrations in never, ex and current smokers with asthma before and after oral corticosteroids.</p> <p>Methods: Exploratory study utilizing two weeks of oral dexamethasone (equivalent to 40 mg/day prednisolone) in 22 current, 21 never and 10 ex-smokers with asthma. Induced sputum supernatant and plasma was obtained before and after oral dexamethasone. 25 cytokines were measured by multiplex microbead system (Invitrogen, UK) on a Luminex platform.</p> <p>Results: Smokers with asthma had elevated sputum cytokine interleukin (IL) -6, -7, and -12 concentrations compared to never smokers with asthma. Few sputum cytokine concentrations changed in response to dexamethasone IL-17 and IFNα increased in smokers, CCL4 increased in never smokers and CCL5 and CXCL10 reduced in ex-smokers with asthma. Ex-smokers with asthma appeared to have evidence of an ongoing corticosteroid resistant elevation of cytokines despite smoking cessation. Several plasma cytokines were lower in smokers wi</p> <p>Conclusion: Cigarette smoking in asthma is associated with a corticosteroid insensitive increase in multiple airway cytokines. Distinct airway cytokine profiles are present in current smokers and never smokers with asthma and could provide an explanatory mechanism for the altered clinical behavior observed in smokers with asthma.</p&gt

    Importance of amino acid composition to improve skin collagen protein synthesis rates in UV-irradiated mice

    Get PDF
    Skin collagen metabolism abnormalities induced by ultraviolet (UV) radiation are the major causes of skin photoaging. It has been shown that the one-time exposure of UV irradiation decreases procollagen mRNA expression in dermis and that chronic UV irradiation decreases collagen amounts and induces wrinkle formation. Amino acids are generally known to regulate protein metabolism. Therefore, we investigated the effects of UV irradiation and various orally administered amino acids on skin collagen synthesis rates. Groups of 4–5 male, 8-week-old HR-1 hairless mice were irradiated with UVB (66 mJ/cm2) twice every other day, then fasted for 16 h. The fractional synthesis rate (FSR; %/h) of skin tropocollagen was evaluated by incorporating l-[ring-2H5]-phenylalanine. We confirmed that the FSR of dermal tropocollagen decreased after UVB irradiation. The FSR of dermal tropocollagen was measured 30 min after a single oral administration of amino acids (1 g/kg) to groups of 5–16 UVB-irradiated mice. Branched-chain amino acids (BCAA, 1.34 ± 0.32), arginine (Arg, 1.66 ± 0.39), glutamine (Gln, 1.75 ± 0.60), and proline (Pro, 1.48 ± 0.26) did not increase the FSR of skin tropocollagen compared with distilled water, which was used as a control (1.56 ± 0.30). However, essential amino acids mixtures (BCAA + Arg + Gln, BCAA + Gln, and BCAA + Pro) significantly increased the FSR (2.07 ± 0.58, 2.04 ± 0.54, 2.01 ± 0.50 and 2.07 ± 0.59, respectively). This result suggests that combinations of BCAA and glutamine or proline are important for restoring dermal collagen protein synthesis impaired by UV irradiation

    Quantifying measures to limit wind driven resuspension of sediments for improvement of the ecological quality in some shallow Dutch lakes

    Get PDF
    Although phosphorus loadings are considered the main pressure for most shallow lakes, wind-driven resuspension can cause additional problems for these aquatic ecosystems. We quantified the potential effectiveness of measures to reduce the contribution of resuspended sediments, resulting from wind action, to the overall light attenuation for three comparable shallow peat lakes with poor ecological status in the Netherlands: Loosdrecht, Nieuwkoop, and Reeuwijk (1.8–2.7 m depth, 1.6–2.5 km fetch). These measures are: 1. wave reducing barriers, 2. water level fluctuations, 3. capping of the sediment with sand, and 4. combinations of above. Critical shear stress of the sediments for resuspension (Vcrit), size distribution, and optical properties of the suspended material were quantified in the field (June 2009) and laboratory. Water quality monitoring data (2002–2009) showed that light attenuation by organic suspended matter in all lakes is high. Spatial modeling of the impact of these measures showed that in Lake Loosdrecht limiting wave action can have significant effects (reductions from 6% exceedance to 2% exceedance of Vcrit), whereas in Lake Nieuwkoop and Lake Reeuwijk this is less effective. The depth distribution and shape of Lake Nieuwkoop and Lake Reeuwijk limit the role of wind-driven resuspension in the total suspended matter concentration. Although the lakes are similar in general appearance (origin, size, and depth range) measures suitable to improve their ecological status differ. This calls for care when defining the programme of measures to improve the ecological status of a specific lake based on experience from other lakes.
    • …
    corecore