5,032 research outputs found

    Ductility enhancement of layered stainless steel with nanograined interface layers

    Get PDF
    Combination of surface mechanical attrition treatment (SMAT) and co-rolling is a promising experimental methodology to design metals with high strength and high ductility. Recent results have revealed that brittle nanograined interface layer (NGIL) can enhance the ductility of the co-rolled SMATed stainless steel (SS). In the present study, the cohesive finite element method is used to show that the SS ductility is significantly enhanced with the increase of fracture toughness of coarse-grained layers and failure strain of NGIL. However the ductility will not increase if the NGIL thickness goes beyond 60 μm. © 2011 Elsevier B.V. All rights reserved.postprin

    Delay and Reliability of Load-Based Listen-Before-Talk in LAA

    Full text link
    © 2013 IEEE. With the release of the 5 GHz unlicensed spectrum has emerged licensed-Assisted access, in which long-Term evolution (LTE) operators compete with Wi-Fi users for a share of the unlicensed spectrum so as to augment their licensed spectrum. Subsequently, there has been the need to develop a LTE channel access mechanism that enables harmonious coexistence between Wi-Fi and LTE. Load-based listen-before-Talk (LB-LBT) has been adopted as this LTE channel access mechanism by the 3rd Generation Partnership Project (3GPP). Theoretical modelling of LB-LBT schemes has focused on throughput and fair channel-Time sharing between Wi-Fi and LTE technologies. We explore a LB-LBT scheme that belongs to LBT category 4, as recommended by the 3GPP, and develop a model for the distribution of the medium access control (MAC) delays experienced by the Wi-Fi packets and LTE frames. The model, validated by simulations, reveals design insights that can be used to dynamically adjust the LB-LBT parameters not only to achieve channel-Time fairness, but also to guarantee MAC-delay bounds, with specified probability

    Harmonising Coexistence of Machine Type Communications with Wi-Fi Data Traffic under Frame-Based LBT

    Full text link
    © 1972-2012 IEEE. The existence of relatively long LTE data blocks within the licensed-assisted access (LAA) framework results in bursty machine-type communications (MTC) packet arrivals, which cause system performance degradation and present new challenges in Markov modeling. We develop an embedded Markov chain to characterize the dynamic behavior of the contention arising from bursty MTC and Wi-Fi data traffic in the LAA framework. Our theoretical model reveals a high-contention phenomenon caused by the bursty MTC traffic, and quantifies the resulting performance degradation for both MTC and Wi-Fi data traffic. The Markov model is further developed to evaluate three potential solutions aiming to alleviate the contention. Our analysis shows that simply expanding the contention window, although successful in reducing congestion, may cause unacceptable MTC data loss. A TDMA scheme instead achieves better MTC packet delivery and overall throughput, but requires centralized coordination. We propose a distributed scheme that randomly spreads the MTC access processes through the available time period. Our model results, validated by simulations, demonstrate that the random spreading solution achieves a near TDMA performance, while preserving the distributed nature of the Wi-Fi protocol. It alleviates the MTC traffic contention and improves the overall throughput by up to 10%

    Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conflicting research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as both a tumor promoter and a tumor suppressor in the development of breast cancer. To resolve this, we have re-investigated the role of this CAM in the progression of human breast cancer cells.</p> <p>Methods</p> <p>Three breast cancer cell lines were used for the tests: one luminal-like breast cancer cell line, MCF7, which did not express any METCAM/MUC18, and two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which expressed moderate levels of the protein.</p> <p>MCF7 cells were transfected with the human METCAM/MUC18 cDNA to obtain G418-resistant clones which expressed the protein and were used for testing effects of human METCAM/MUC18 expression on <it>in vitro </it>motility and invasiveness, and <it>in vitro </it>and <it>in vivo </it>tumorigenesis. Both MDA-MB-231 and MDA-MB-468 cells already expressed METCAM/MUC18. They were directly used for <it>in vitro </it>tests in the presence and absence of an anti-METCAM/MUC18 antibody.</p> <p>Results</p> <p>In MCF7 cells, enforced METCAM/MUC18 expression increased <it>in vitro </it>motility, invasiveness, anchorage-independent colony formation (<it>in vitro </it>tumorigenesis), and <it>in vivo </it>tumorigenesis. In both MDA-MB-231 and MDA-MB-468 cells, the anti-METCAM/MUC18 antibody inhibited both motility and invasiveness. Though both MDA-MB-231 and MDA-MB-468 cells established a disorganized growth in 3D basement membrane culture assay, the introduction of the anti-METCAM/MUC18 antibody completely destroyed their growth in the 3D culture.</p> <p>Conclusion</p> <p>These findings support the notion that human METCAM/MUC18 expression promotes the progression of human breast cancer cells by increasing their motility, invasiveness and tumorigenesis.</p

    Protection against Experimental Melioidosis with a Synthetic manno-Heptopyranose Hexasaccharide Glycoconjugate

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Melioidosis is an emerging infectious disease caused by Burkholderia pseudomallei and is associated with high morbidity and mortality rates in endemic areas. Antibiotic treatment is protracted and not always successful; even with appropriate therapy, up to 40% of individuals presenting with melioidosis in Thailand succumb to infection. In these circumstances, an effective vaccine has the potential to have a dramatic impact on both the scale and the severity of disease. Currently, no vaccines are licensed for human use. A leading vaccine candidate is the capsular polysaccharide consisting of a homopolymer of unbranched 1→3 linked 2-O-acetyl-6-deoxy-β-d-manno-heptopyranose. Here, we present the chemical synthesis of this challenging antigen using a novel modular disaccharide assembly approach. The resulting hexasaccharide was coupled to the nontoxic Hc domain of tetanus toxin as a carrier protein to promote recruitment of T-cell help and provide a scaffold for antigen display. Mice immunized with the glycoconjugate developed IgM and IgG responses capable of recognizing native capsule, and were protected against infection with over 120 × LD50 of B. pseudomallei strain K96243. This is the first report of the chemical synthesis of an immunologically relevant and protective hexasaccharide fragment of the capsular polysaccharide of B. pseudomallei and serves as the rational starting point for the development of an effective licensed vaccine for this emerging infectious disease.This work was funded by the United Kingdom Ministry of Defence. The mass spectral data described here were acquired on an Orbitrap Fusion mass spectrometer funded by National Institutes of Health grant 1S10OD010645-01A1

    Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel

    Get PDF
    Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation

    Research on the Security of Cold-Chain Logistics

    Get PDF
    In this paper, the definition of cold-chain logistics and security features are analyzed. Based on overview of China's cold-chain logistics, cold chain, through the status quo at home and abroad contrast, we present some of China's food chain problems. With security control system of thought, and risk management theory, the establishment of a more comprehensive evaluation of cold chain logistics system, through a cold-chain business case analysis, put forward suggestions to solve a few cold-chain logistics security strategy

    Strength-limiting damage and its mitigation in CAD-CAM zirconia-reinforced lithium-silicate ceramics machined in a fully crystallized state.

    Get PDF
    OBJECTIVES: The objective was to explore how clinically relevant machining process and heat treatment influence damage accumulation and strength degradation in lithium silicate-based glass ceramics machined in the fully crystallized state. METHODS: A commercial zirconia-reinforced lithium silicate (ZLS) glass ceramic with a fully developed microstructure (Celtra® Duo) was studied. Disk-shaped specimens (nominal 10 mm diameter and 1 mm thickness) were fabricated either using a CAD-CAM process, creating a clinically relevant dental restoration surface, or were sectioned from water-jet cut cylindrical blocks with their critical surfaces consistently polished. Bi-axial flexure strength (BFS) was determined in a ball-on-ring configuration, and fractographic analysis was performed on failed specimens. XRD, AFM and SEM measurements were conducted before and after heat treatment. For each sample group, BFS was correlated with surface roughness. A two-way ANOVA and post-hoc Tukey tests were used to determine differences in BFS between machining and heat treatment groups (ɑ = 0.05). RESULTS: A two-way ANOVA demonstrated that BFS was influenced by fabrication route (p < 0.01) with CAD-CAM specimens exhibiting significantly lower mean BFS. A factorial interaction was observed between heat treatment and machining route (p < 0.01), where a significant strengthening effect of post-manufacture heat treatment was noted for CAD-CAM specimens but not sectioned and polished samples. CAD-CAM specimens exhibited sub-surface lateral cracks alongside radial cracks near fracture origin which were not observed for polished specimens. BFS did not correlate with surface roughness for polished specimens, and no change in microstructure was detectable by XRD following heat treatment. SIGNIFICANCE: The mechanical properties of the ZLS ceramic material studied were highly sensitive to the initial surface defect integral associated with manufacturing route and order of operations. CAD-CAM manufacturing procedures result in significant strength-limiting damage which is likely to influence restoration performance; however, this can be partially mitigated by post-machining heat treatment

    Weak-Unforgeable Tags for Secure Supply Chain Management

    Get PDF
    Given the value of imported counterfeit and pirated goods, the need for secure supply chain management is pertinent. Maleki et al. (HOST 2017) propose a new management scheme based on RFID tags (with 2-3K bits NVM) which, if compared to other schemes, is competitive on several performance and security metrics. Its main idea is to have each RFID tag stores its reader events in its own NVM while moving through the supply chain. In order to bind a tag\u27s identity to each event such that an adversary is not able to impersonate the tag\u27s identity on another duplicate tag, a function with a weak form of unforgeability is needed. In this paper, we formally dene this security property, present three constructions (MULTIPLY-ADD, ADD-XOR, and S-Box-CBC) having this security property, and show how to bound the probability of successful impersonation in concrete parameter settings. Finally, we compare our constructions with the light-weight hash function PHOTON used by Maleki et al. in terms of security and circuit area needed. We conclude that our ADD-XOR and S-Box-CBC constructions have approximately 1/4 - 1/3 of PHOTON\u27s total circuit area (this also includes the control circuitry besides PHOTON) while maintaining an appropriate security level which takes care of economically motivated adversaries
    corecore