175 research outputs found

    Dopant profiling on ultra shallow junctions in Si with ADF-STEM

    Get PDF
    The utmost scaling of the electronic devices nowadays attained, requires both ultra shallow junctions and high levels of dopant concentration and activation. In these conditions, the presence of surfaces or interfaces assumes a very important role in the determination of the dopant distribution during post-implantation annealing. In this work, we show how the Z-contrast annular dark field scanning transmission electron microscopy (ADF-STEM) technique, pionereed by Pennycook and coworkers [1], can be optimised to give reliable dopant profiles at a subnanometer scale thus satisfying some of the new needs of the ultra shallow implants characterization

    Shallow BF2 implants in Xe-bombardment-preamorphized Si: the interaction between Xe and F

    Get PDF
    Si(100) samples, preamorphized to a depth of ~30 nm using 20 keV Xe ions to a nominal fluence of 2×1014 cm-2 were implanted with 1 and 3 keV BF2 ions to fluences of 7×1014 cm-2. Following annealing over a range of temperatures (from 600 to 1130 °C) and times the implant redistribution was investigated using medium-energy ion scattering (MEIS), secondary ion mass spectrometry (SIMS), and energy filtered transmission electron microscopy (EFTEM). MEIS studies showed that for all annealing conditions leading to solid phase epitaxial regrowth, approximately half of the Xe had accumulated at depths of 7 nm for the 1 keV and at 13 nm for the 3 keV BF2 implant. These depths correspond to the end of range of the B and F within the amorphous Si. SIMS showed that in the preamorphized samples, approximately 10% of the F migrates into the bulk and is trapped at the same depths in a ~1:1 ratio to Xe. These observations indicate an interaction between the Xe and F implants and a damage structure that becomes a trapping site. A small fraction of the implanted B is also trapped at this depth. EXTEM micrographs suggest the development of Xe agglomerates at the depths determined by MEIS. The effect is interpreted in terms of the formation of a volume defect structure within the amorphized Si, leading to F stabilized Xe agglomerates or XeF precipitates

    H-tailored surface conductivity in narrow band gap In(AsN)

    Get PDF
    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (similar to 100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of similar to 10(18) m(-2) and a high electron mobility (mu > 0.1 m(2)V(-1)s(-1) at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License

    Role of Gas6 and TAM Receptors in the Identification of Cardiopulmonary Involvement in Systemic Sclerosis and Scleroderma Spectrum Disorders

    Get PDF
    Background: Few biomarkers are available for early identification of pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) in systemic sclerosis (SS) and scleroderma spectrum disorders (SSD). Aims: To evaluate Gas6, sAxl, and sMer as biomarkers for cardiopulmonary complications of SS and SSD. Methods: In a cross-sectional observational study, we recruited 125 consecutive patients, affected by SS and SSD and referred to a tertiary-level pulmonary hypertension outpatient clinic. All patients underwent a comprehensive evaluation for identification of PAH and ILD. Gas6, sMer, and sAxl concentrations were measured with ELISA protocols, and concentrations were compared according to PAH or ILD. Results: Nineteen subjects had pulmonary hypertension (PH) (14 PAH), and 39 had ILD (6 severe). Plasma sMer was increased in PAH (18.6 ng/ml IQR [11.7-20.3]) with respect to the absence (12.4 [8.0-15.8]) or other form of pulmonary hypertension (9.6 [7.4-12.5]; K-W variance p < 0.04). Conversely, Gas6 and sAxl levels were slightly increased in mild ILD (25.8 ng/ml [19.5-32.1] and 24.6 [20.1-32.5]) and reduced in severe ILD (16.6 [15.0-22.1] and 15.5 [14.9-22.4]) in comparison to no evidence of ILD (23.4 [18.8-28.1] and 21.6 [18.1-28.4]; K-W, p 64 0.05). Plasma sMer 65 19 ng/ml has 50% sensitivity and 92% specificity in PAH identification (area under the ROC curve (AUC) 0.697, p < 0.03). Values of Gas6 64 24.5 ng/ml and of sAxl 64 15.5 ng/ml have 100% and 67% sensitivity and 47% and 86% specificity, respectively, in identifying severe ILD (Gas6 AUC 0.787, p < 0.001; sAxl AUC 0.705, p < 0.05). Conclusions: The assay of Gas6 sAxl and sMer may be useful to help in the identification of PAH and ILD in SS and SSD patients. The Gas6/TAM system seems to be relevant in cardiopulmonary complications of SS and SSD and merits further investigations

    Diffusion and activation of ultrashallow B implants in silicon on insulator: End-of-range defect dissolution and the buried Si∕SiO2 interface

    Get PDF
    The fabrication of preamorphized p-type ultrashallow junctions in silicon-on-insulator (SOI) has been investigated. Electrical and structural measurements after annealing show that boron deactivation and transient enhanced diffusion are reduced in SOI compared to bulk wafers. The reduction is strongest when the end-of-range defects of the preamorphizing implant are located deep within the silicon overlayer of the SOI silicon substrate. Results reveal a very substantial increase in the dissolution rate of the end-of-range defect band. A key player in this effect is the buried Si/SiO2 interface, which acts as an efficient sink for interstitials competing with the silicon surface.</p

    Solid phase epitaxial re-growth of Sn ion implanted germanium thin films

    Get PDF
    Doping of Ge with Sn atoms by ion implantation and annealing by solid phase epitaxial re-growth process was investigated as a possible way to create GeSn layers. Ion implantation was carried out at liquid nitrogen to avoid nano-void formation and three implant doses were tested: 5×10, 1×10 and 5×10 at/cm, respectively. Implant energy was set to 45 keV and implants were carried out through an 11 nm SiNO film to prevent Sn out-diffusion upon annealing. This was only partially effective. Samples were then annealed in inert atmosphere either at 350°C varying anneal time or for 100 s varying temperature from 300 to 500°C. SPER was effective to anneal damage without Sn diffusion at 350° for samples implanted at medium and low fluences whereas the 5×10 at/cm samples remained with a ∼15 nm amorphous layer even when applying the highest thermal budget. © 2012 American Institute of Physics
    corecore