6 research outputs found

    The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins

    Get PDF
    Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the \u27venom-ome\u27 and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 \u27venom-ome-specific toxins\u27 (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery

    The tuatara genome reveals ancient features of amniote evolution

    No full text
    The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing

    Vertebrate Genome Size and the Impact of Transposable Elements in Genome Evolution

    No full text
    In eukaryotes, the haploid DNA content (C-value) varies widely across lineages without an apparent correlation with the complexity of organisms. This incongruity has been called the C-value paradox and has been solved by demonstrating that not all DNA is constituted by genes but, on the contrary,most of it ismade up of repetitive DNA. In vertebrates, the increasing number of sequenced genomes has shown that differences in genome size between lineages are ascribable to a variation in transposon content. These mobile elements, previously perceived as “junk DNA” or “selfish DNA,” are now recognized as the major players in shaping genomes. During vertebrate evolution, transposable elements have been repeatedly co-opted and exapted to generate regulatory sequences, coding exons, or entirely new genes that lead to evolutionary advantages for the host. Moreover, transposable elements are also responsible for substantial rearrangements such as insertions, deletions, inversions, and duplications potentially associated with, or following, speciation events
    corecore