45 research outputs found
Geometrical Breakdown Approach to interpretation of depositional sequences
Seismic and sequence stratigraphic analyses are important methodologies for interpreting coastal and shallow-marine deposits. Though both methods are based on objective criteria, terminology for reflection/stratal stacking is widely linked to eustatic cycles, which does not adequately incorporate factors such as differential subsidence, sediment supply, and autogenic effects. To reduce reliance on model-driven interpretations, we developed a Geometrical Breakdown Approach (GBA) that facilitates interpretation of horizon-bound reflection packages by systematically identifying upward-downward and landward-seaward trajectories of clinoform inflection points and stratal terminations, respectively. This approach enables a rigorous characterization of stratal surfaces and depositional units. The results are captured in three-letter acronyms that provide an efficient way of recognizing repetitive stacking patterns through discriminating reflection packages objectively to the maximum level of resolution provided by the data. Comparison of GBA with selected sequence stratigraphic models that include three and four systems tracts and the accommodation succession approach shows that the GBA allows a greater level of detail to be extracted, identifying key surfaces with more precision and utilizing more effectively the fine-scale resolution provided by the input seismic data. We tested this approach using a synthetic analogue model and field data from the New Jersey margin. The results demonstrate that the geometric criteria constitute a reliable tool for identifying systems tracts and provide an objective and straightforward method for practitioners at all levels of experience
Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes
The rock record contains a rich variety of sedimentary surface textures on siliciclastic sandstone, siltstone and mudstone bedding planes. In recent years, an increasing number of these textures have been attributed to surficial microbial mats at the time of deposition, resulting in their classification as microbially induced sedimentary structures, or MISS. Research into MISS has developed at a rapid rate, resulting in a number of misconceptions in the literature. Here, we attempt to rectify these MISS misunderstandings. The first part of this paper surveys the stratigraphic and environmental range of reported MISS, revealing that contrary to popular belief there are more reported MISS-bearing rock units of Phanerozoic than Precambrian age. Furthermore, MISS exhibit a pan-environmental and almost continuous record since the Archean. Claims for the stratigraphic restriction of MISS to intervals prior to the evolution of grazing organisms or after mass extinction events, as well as claims for the environmental restriction of MISS, appear to result from sampling bias. In the second part of the paper we suggest that raised awareness of MISS has come at the cost of a decreasing appreciation of abiotic processes that may create morphologically similar features. By introducing the umbrella term ‘sedimentary surface textures’, of which MISS are one subset, we suggest a practical methodology for classifying such structures in the geological record. We illustrate how elucidating the formative mechanisms of ancient sedimentary surface textures usually requires consideration of a suite of sedimentological evidence from surrounding strata. Resultant interpretations, microbial or non-microbial, should be couched within a reasonable degree of uncertainty. This approach recognizes that morphological similarity alone does not constitute scientific proof of a common origin, and reinstates a passive descriptive terminology for sedimentary surface textures that cannot be achieved with the current MISS lexicon. It is hoped that this new terminology will reduce the number of overly sensational and misleading claims of MISS occurrence, and permit the means to practically separate initial observation from interpretation. Furthermore, this methodology offers a scientific approach that appreciates the low likelihood of conclusively identifying microbial structures from visual appearance alone, informing the search for true MISS in Earth's geological record and potentially on other planetary bodies such as Mars.Instances of sedimentary surface textures in the field were identified coincidentally during multiple seasons of varied field investigations primarily funded for NSD by a variety of organisations including a George Frederic Matthew Research Grant from the New Brunswick Museum for 2012, and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada to MRG. AGL is supported by the Natural Environment Research Council [grant number NE/L011409/1].This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.earscirev.2016.01.00
Recommended from our members
Early bursts of diversification defined the faunal colonization of land
The colonization of land was one of the major events in Earth history, leading to the expansion of life and laying the foundations for the modern biosphere. We examined trace fossils, the record of the activities of past life, to understand how animals diversify both behaviourally and ecologically when colonizing new habitats. The faunal invasion of land was preceded by excursions of benthic animals into very shallow, marginal marine environments during the latest Ediacaran period and culminated in widespread colonization of non-marine niches by the end of the Carboniferous period. Trace fossil evidence for the colonization of new environments shows repeated early burst patterns of maximal ichnodisparity (the degree of difference among basic trace fossil architectural designs), ecospace occupation and level of ecosystem engineering prior to maximal ichnodiversity. Similarities across different environments in the types of behavioural programme employed (as represented by different trace fossils), modes of life present and the ways in which animals impacted their environments suggest constraints on behavioural and ecological diversification. The early burst patterns have the hallmark of novelty events. The underlying drivers of these events were probably the extrinsic limitation of available ecospace and intrinsic controls of genomic and developmental plasticity that enabled trace-maker morphological and behavioural novelty.Financial support for the initial part of this project was provided to N.J.M. through a Government of Canada Post-doctoral Research Fellowship under the Canadian Commonwealth Scholarship Program. Additional funding was provided by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grants 311726-05/08/15 and 311727-05/08/13 (to L.A.B. and M.G.M., respectively). M.R.G also acknowledges funding from an NSERC Discovery Grant. This is Earth Sciences Sector contribution number 20160255 and contribution 314 of the Evolution of Terrestrial Ecosystems Consortium of the National Museum of Natural History, Washington DC
Discussion on 'Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation'. Journal of the Geological Society, https://doi.org/10.1144/jgs2016-063
The first-order importance of tectonic and environmental controls for terrigenous sediment supply has rarely been questioned, but the role of vegetation in the modification of ancient alluvial signatures has been observed since the mid-20th century (Vogt 1941). Studies of sparsely vegetated rivers (Schumm 1968) and alluvial stratigraphic variation (Cotter 1978; Davies & Gibling 2010) led to observations of (1) plant modulation of alluvial signatures and (2) Palaeozoic facies shifts (PFS): unidirectional changes to facies diversity and frequency, in stratigraphic alliance with the plant fossil record. One PFS is the Siluro-Devonian appearance of mud-rich, architecturally complex alluvium, traditionally ascribed to meandering rivers, and sedimentologically distinct from pre-vegetation strata (Davies & Gibling 2010; Long 2011). Using selected secondary data, Santos et al. (2017) dispute the correlation of these observations using three key points, as follows. (1) The mid-Palaeozoic was typified by orogenic assembly of low-gradient equatorial continents and elevated sea-level, which led to tropical weathering (abundant fine sediment) and extensive alluvial plains. This drove the PFS by promoting river meandering independently of vegetation. (2) Meandering does not require vegetation; this is shown by examples in Precambrian deposits, on other planets, and in ‘non-vegetated’ deserts. Meandering rivers were more abundant than the pre-vegetation rock record suggests, owing to selective bypass and deflation of fine material. (3) Early Siluro-Devonian (meaning Ludlow–Early Devonian) land plants were too small, their biomass and cover too limited, and their wetland habitat too narrow to have stabilized meandering channels, influencing landscape little more than earlier microbial communities. We contest the conclusions and method of the paper, and deal with each point in turn
Sustained fluvial deposition recorded in Mars’ Noachian stratigraphic record
Orbital observation has revealed a rich record of fluvial landforms on Mars, with much of this record dating 3.6–3.0 Ga. Despite widespread geomorphic evidence, few analyses of Mars’ alluvial sedimentary-stratigraphic record exist, with detailed studies of alluvium largely limited to smaller sand-bodies amenable to study in-situ by rovers. These typically metre-scale outcrop dimensions have prevented interpretation of larger scale channel-morphology and long-term basin evolution, vital for understanding the past Martian climate. Here we give an interpretation of a large sedimentary succession at Izola mensa within the NW Hellas Basin rim. The succession comprises channel and barform packages which together demonstrate that river deposition was already well established >3.7 Ga. The deposits mirror terrestrial analogues subject to low-peak discharge variation, implying that river deposition at Izola was subject to sustained, potentially perennial, fluvial flow. Such conditions would require an environment capable of maintaining large volumes of water for extensive time-periods, necessitating a precipitation-driven hydrological cycle
A dance to the music of time
This portrait of a toddler posed on a chair in a white gown was taken by traveling photographer Albert J. Ewing, ca. 1896-1912. Like most of Ewing's work, it was likely taken in southeastern Ohio or central West Virginia.
Born in 1870 in Washington County, Ohio, near Marietta, Ewing most likely began his photography career in the 1890s. The 1910 US Census and a 1912-1913 directory list him as a photographer. A negative signed "Ewing Brothers" and a picture with his younger brother, Frank, indicate that Frank may have joined the business. After 1916, directories list Albert as a salesman. He died in 1934. The Ewing Collection consists of 5,055 glass plate negatives, each individually housed and numbered. Additionally, the collection includes approximately 450 modern contact prints made from the glass plate negatives. Subjects include infants and young children, elderly people, families, school and religious groups, animals and rural scenes. In 1982, the Ohio Historical Society (now the Ohio History Connection) received the collection, still housed in the original dry plate negative boxes purchased by Ewing. A selection of the original glass plate negatives were exhibited for the first time in 2013 at the Ohio History Center
Recommended from our members
Reply to comment on the paper by Davies et al. “Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes” (Earth Science Reviews, 154 (2016), 210–246)
We thank Noffke (2017) for her comment and for providing an opportunity to clarify our classification of “sedimentary surface textures”. We accord great credit to Dr. Noffke and other dedicated researchers whose detailed work has brought microbially induced sedimentary structures (MISS) to the widespread attention of geoscientists. However, we stand by our assertion that attributing structures observed in practical field and laboratory studies to processes of formation is much more problematic than Noffke (2017) indicates. Indeed, points in the Comment confirm the need for a classification system that categorises the degree of certainty attributed to a given interpretation. We stress that our paper was not designed as a critique of previous studies of MISS but rather was designed to encourage a reasonable assessment of uncertainty in assigning sedimentary surface textures to physical processes or to MISS