456 research outputs found

    Characterization of an INVS Model IV Neutron Counter for High Precision (γ,n\gamma,n) Cross-Section Measurements

    Get PDF
    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 60% maximum efficiency make it well suited for (γ,n\gamma,n) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of ±\pm 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.Comment: 22 pages, 13 figure

    The issue of Dark Energy in String Theory

    Get PDF
    Recent astrophysical observations, pertaining to either high-redshift supernovae or cosmic microwave background temperature fluctuations, as those measured recently by the WMAP satellite, provide us with data of unprecedented accuracy, pointing towards two (related) facts: (i) our Universe is accelerated at present, and (ii) more than 70 % of its energy content consists of an unknown substance, termed dark energy, which is believed responsible for its current acceleration. Both of these facts are a challenge to String theory. In this review I outline briefly the challenges, the problems and possible avenues for research towards a resolution of the Dark Energy issue in string theory.Comment: Based on Invited lecture at the ``Third Aegean Summer School on: The Invisible Universe: Dark matter and Dark energy'', Karfas, Chios Island (Greece) September 26-October 1 200

    The Shapes of Dirichlet Defects

    Get PDF
    If the vacuum manifold of a field theory has the appropriate topological structure, the theory admits topological structures analogous to the D-branes of string theory, in which defects of one dimension terminate on other defects of higher dimension. The shapes of such defects are analyzed numerically, with special attention paid to the intersection regions. Walls (co-dimension 1 branes) terminating on other walls, global strings (co-dimension 2 branes) and local strings (including gauge fields) terminating on walls are all considered. Connections to supersymmetric field theories, string theory and condensed matter systems are pointed out.Comment: 24 pages, RevTeX, 21 eps figure

    Open inflation and the singular boundary

    Get PDF
    The singularity in Hawking and Turok's model (hep-th/9802030) of open inflation has some appealing properties. We suggest that this singularity should be regularized with matter. The singular instanton can then be obtained as the limit of a family of ``no-boundary'' solutions where both the geometry and the scalar field are regular. Using this procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking boundary term. Unrelated to this question, we also point out that gravitational backreaction improves the behaviour of scalar perturbations near the singularity. As a result, the problem of quantizing scalar perturbations and gravity waves seems to be very well posed.Comment: 7 page

    SO(3) Gauge Symmetry and Neutrino-Lepton Flavor Physics

    Full text link
    Based on the SO(3) gauge symmetry for three family leptons and general see-saw mechanism, we present a simple scheme that allows three nearly degenerate Majorana neutrino masses needed for hot dark matter. The vacuum structure of the spontaneous SO(3) symmetry breaking can automatically lead to a maximal CP-violating phase. Thus the current neutrino data on both the atmospheric neutrino anomaly and solar neutrino deficit can be accounted for via maximal mixings without conflict with the current data on the neutrinoless double beta decay. The model also allows rich interesting phenomena on lepton flavor violations.Comment: 10 pages, Revtex, no figures, minor changes and references added, the version to appear in Phys. Rev.

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    Magnetic Branes in Gauss-Bonnet Gravity

    Full text link
    We present two new classes of magnetic brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static magnetic brane. We also generalize this solution to the case of spinning magnetic branes with one or more rotation parameters. We find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when all the rotation parameters are zero, the electric field vanishes, and therefore the brane has no net electric charge. For the spinning brane, when one or more rotation parameters are non zero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Again we find that the net electric charge of the branes in these spacetimes is proportional to the magnitude of the velocity of the brane. Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.

    Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate

    Full text link
    We demonstrate that the ambiguity of the particle content for quantum fields in a generally curved space-time can be experimentally investigated in an ultracold gas of atoms forming a Bose-Einstein condensate. We explicitly evaluate the response of a suitable condensed matter detector, an ``Atomic Quantum Dot,'' which can be tuned to measure time intervals associated to different effective acoustic space-times. It is found that the detector response related to laboratory, ``adiabatic,'' and de Sitter time intervals is finite in time and nonstationary, vanishing, and thermal, respectively.Comment: 9 pages, 2 figures; references updated, as published in Physical Review

    Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions

    Full text link
    We compute logarithmic corrections to the entropy of rotating extremal black holes using quantum entropy function i.e. Euclidean quantum gravity approach. Our analysis includes five dimensional supersymmetric BMPV black holes in type IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL models, and also non-supersymmetric extremal Kerr black hole and slowly rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black holes our results are in perfect agreement with the microscopic results derived from string theory. In particular we reproduce correctly the dependence of the logarithmic corrections on the number of U(1) gauge fields in the theory, and on the angular momentum carried by the black hole in different scaling limits. We also explain the shortcomings of the Cardy limit in explaining the logarithmic corrections in the limit in which the (super)gravity description of these black holes becomes a valid approximation. For non-supersymmetric extremal black holes, e.g. for the extremal Kerr black hole in four dimensions, our result provides a stringent testing ground for any microscopic explanation of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation between boundary condition and choice of ensemble, modified analysis for slowly rotating black holes, all results remain unchanged, typos corrected; v3: minor additions and correction

    Brane Big-Bang Brought by Bulk Bubble

    Get PDF
    We propose an alternative inflationary universe scenario in the context of Randall-Sundrum braneworld cosmology. In this new scenario the existence of extra-dimension(s) plays an essential role. First, the brane universe is initially in the inflationary phase driven by the effective cosmological constant induced by small mismatch between the vacuum energy in the 5-dimensional bulk and the brane tension. This mismatch arises since the bulk is initially in a false vacuum. Then, the false vacuum decay occurs, nucleating a true vacuum bubble with negative energy inside the bulk. The nucleated bubble expands in the bulk and consequently hits the brane, bringing a hot big-bang brane universe of the Randall-Sundrum type. Here, the termination of the inflationary phase is due to the change of the bulk vacuum energy. The bubble kinetic energy heats up the universe. As a simple realization, we propose a model, in which we assume an interaction between the brane and the bubble. We derive the constraints on the model parameters taking into account the following requirements: solving the flatness problem, no force which prohibits the bubble from colliding with the brane, sufficiently high reheating temperature for the standard nucleosynthesis to work, and the recovery of Newton's law up to 1mm. We find that a fine tuning is needed in order to satisfy the first and the second requirements simultaneously, although, the other constraints are satisfied in a wide range of the model parameters.Comment: 20pages, 5figures, some references added, the previous manuscript has been largely improve
    corecore