12,055 research outputs found

    Complex Numbers, Quantum Mechanics and the Beginning of Time

    Full text link
    A basic problem in quantizing a field in curved space is the decomposition of the classical modes in positive and negative frequency. The decomposition is equivalent to a choice of a complex structure in the space of classical solutions. In our construction the real tunneling geometries provide the link between the this complex structure and analytic properties of the classical solutions in a Riemannian section of space. This is related to the Osterwalder- Schrader approach to Euclidean field theory.Comment: 27 pages LATEX, UCSBTH-93-0

    Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Get PDF
    We show that under variation of moduli fields ϕ\phi the first law of black hole thermodynamics becomes dM=κdA8π+ΩdJ+ψdq+χdpΣdϕdM = {\kappa dA\over 8\pi} + \Omega dJ + \psi dq + \chi dp - \Sigma d\phi, where Σ\Sigma are the scalar charges. We also show that the ADM mass is extremized at fixed AA, JJ, (p,q)(p,q) when the moduli fields take the fixed value ϕfix(p,q)\phi_{\rm fix}(p,q) which depend only on electric and magnetic charges. It follows that the least mass of any black hole with fixed conserved electric and magnetic charges is given by the mass of the double-extreme black hole with these charges. Our work allows us to interpret the previously established result that for all extreme black holes the moduli fields at the horizon take a value ϕ=ϕfix(p,q)\phi= \phi_{\rm fix}(p,q) depending only on the electric and magnetic conserved charges: ϕfix(p,q) \phi_{\rm fix}(p,q) is such that the scalar charges Σ(ϕfix,(p,q))=0\Sigma ( \phi_{\rm fix}, (p,q))=0.Comment: 3 pages, no figures, more detailed versio

    Analytical results for string propagation near a Kaluza-Klein black hole

    Full text link
    This brief report presents analytical solutions to the equations of motion of a null string. The background spacetime is a magnetically charged Kaluza-Klein black hole. The string coordinates are expanded with the world-sheet velocity of light as an expansion parameter. It is shown that the zeroth order solutions can be expressed in terms of elementary functions in an appropriate large distance approximation. In addition, a class of exact solutions corresponding to the Pollard-Gross-Perry-Sorkin monopole case is also obtained.Comment: Revtex, 9 pages including two postscript figures, More detailed discussion and new references adde

    Time-Dependent Multi-Centre Solutions from New Metrics with Holonomy Sim(n-2)

    Full text link
    The classifications of holonomy groups in Lorentzian and in Euclidean signature are quite different. A group of interest in Lorentzian signature in n dimensions is the maximal proper subgroup of the Lorentz group, SIM(n-2). Ricci-flat metrics with SIM(2) holonomy were constructed by Kerr and Goldberg, and a single four-dimensional example with a non-zero cosmological constant was exhibited by Ghanam and Thompson. Here we reduce the problem of finding the general nn-dimensional Einstein metric of SIM(n-2) holonomy, with and without a cosmological constant, to solving a set linear generalised Laplace and Poisson equations on an (n-2)-dimensional Einstein base manifold. Explicit examples may be constructed in terms of generalised harmonic functions. A dimensional reduction of these multi-centre solutions gives new time-dependent Kaluza-Klein black holes and monopoles, including time-dependent black holes in a cosmological background whose spatial sections have non-vanishing curvature.Comment: Typos corrected; 29 page

    Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors

    Get PDF
    A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure

    Variable cavity volume tooling for high-performance resin infusion moulding

    Get PDF
    This article describes the research carried out by Warwick under the BAE Systems/EPSRC programme ‘Flapless Aerial Vehicles Integrated Interdisciplinary Research – FLAVIIR’. Warwick's aim in FLAVIIR was to develop low-cost innovative tooling technologies to enable the affordable manufacture of complex composite aerospace structures and to help realize the aim of the Grand Challenge of maintenance-free, low-cost unmanned aerial vehicle manufacture. This article focuses on the evaluation of a novel tooling process (variable cavity tooling) to enable the complete infusion of resin throughout non-crimp fabric within a mould cavity under low (0.1 MPa) injection pressure. The contribution of the primary processing parameters to the mechanical properties of a carbon composite component (bulk-head lug section), and the interactions between parameters, was determined. The initial mould gap (di) was identified as having the most significant effect on all measured mechanical properties, but complex interactions between di, n (number of fabric layers), and vc (mould closure rate) were observed. The process capability was low due to the manual processing, but was improved through process optimization, and delivered properties comparable to high-pressure resin transfer moulding

    Thermal Analyzer for Planetary Soil (TAPS): an in Situ Instrument for Mineral and Volatile-element Measurements

    Get PDF
    Thermal Analyzer for Planetary Soil (TAPS) offers a specific implementation for the generic thermal analyzer/evolved-gas analyzer (TA/EGA) function included in the Mars Environmental Survey (MESUR) strawman payload; applications to asteroids and comets are also possible. The baseline TAPS is a single-sample differential scanning calorimeter (DSC), backed by a capacitive-polymer humidity sensor, with an integrated sampling mechanism. After placement on a planetary surface, TAPS acquires 10-50 mg of soil or sediment and heats the sample from ambient temperature to 1000-1300 K. During heating, DSC data are taken for the solid and evolved gases are swept past the water sensor. Through ground based data analysis, multicomponent DSC data are deconvolved and correlated with the water release profile to quantitatively determine the types and relative proportions of volatile-bearing minerals such as clays and other hydrates, carbonates, and nitrates. The rapid-response humidity sensors also achieve quantitative analysis of total water. After conclusion of soil-analysis operations, the humidity sensors become available for meteorology. The baseline design fits within a circular-cylindrical volume less than 1000 cm(sup 3), occupies 1.2 kg mass, and consumes about 2 Whr of power per analysis. Enhanced designs would acquire and analyze multiple samples and employ additional microchemical sensors for analysis of CO2, SO2, NO(x), and other gaseous species. Atmospheric pumps are also being considered as alternatives to pressurized purge gas

    Nucleating Black Holes via Non-Orientable Instantons

    Get PDF
    We extend the analysis of black hole pair creation to include non- orientable instantons. We classify these instantons in terms of their fundamental symmetries and orientations. Many of these instantons admit the pin structure which corresponds to the fermions actually observed in nature, and so the natural objection that these manifolds do not admit spin structure may not be relevant. Furthermore, we analyse the thermodynamical properties of non-orientable black holes and find that in the non-extreme case, there are interesting modifications of the usual formulae for temperature and entropy.Comment: 27 pages LaTeX, minor typos are correcte
    corecore