A basic problem in quantizing a field in curved space is the decomposition of
the classical modes in positive and negative frequency. The decomposition is
equivalent to a choice of a complex structure in the space of classical
solutions. In our construction the real tunneling geometries provide the link
between the this complex structure and analytic properties of the classical
solutions in a Riemannian section of space. This is related to the Osterwalder-
Schrader approach to Euclidean field theory.Comment: 27 pages LATEX, UCSBTH-93-0