243 research outputs found
Coelectrodeposition of Ternary Mn-Oxide/Polypyrrole Composites for ORR Electrocatalysts: A Study Based on Micro-X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping
Low energy X-ray fluorescence (XRF) and soft X-ray absorption (XAS) microspectroscopies at high space-resolution are employed for the investigation of the coelectrodeposition of composites consisting of a polypyrrole(PPy)-matrix and Mn-based ternary dispersoids, that have been proposed as promising electrocatalysts for oxygen-reduction electrodes. Specifically, we studied Mn–Co–Cu/PP, Mn–Co–Mg/PPy and Mn–Ni–Mg/PPy co-electrodeposits. The Mn–Co–Cu system features the best ORR electrocatalytic activity in terms of electron transfer number, onset potential, half-wave potential and current density. XRF maps and micro-XAS spectra yield compositional and chemical state distributions, contributing unique molecular-level information on the pulse-plating processes. Mn, Ni, Co and Mg exhibit a bimodal distribution consisting of mesoscopic aggregates of micrometric globuli, separated by polymer-rich ridges. Within this common qualitative scenario, the individual systems exhibit quantitatively different chemical distribution patterns, resulting from specific electrokinetic and electrosorption properties of the single components. The electrodeposits consist of Mn3+,4+-oxide particles, accompanied by combinations of Co0/Co2+, Ni0/Ni2+ and Cu0,+/Cu2+ resulting from the alternance of cathodic and anodic pulses. The formation of highly electroactive Mn3+,4+ in the as-fabricated material is a specific feature of the ternary systems, deriving from synergistic stabilisation brought about by two types of bivalent dopants as well as by galvanic contact to elemental meta
Compressive Sensing for Dynamic XRF Scanning
X-Ray Fluorescence (XRF) scanning is a widespread technique of high
importance and impact since it provides chemical composition maps crucial for
several scientific investigations. There are continuous requirements for
larger, faster and highly resolved acquisitions in order to study complex
structures. Among the scientific applications that benefit from it, some of
them, such as wide scale brain imaging, are prohibitively difficult due to time
constraints. However, typically the overall XRF imaging performance is
improving through technological progress on XRF detectors and X-ray sources.
This paper suggests an additional approach where XRF scanning is performed in a
sparse way by skipping specific points or by varying dynamically acquisition
time or other scan settings in a conditional manner. This paves the way for
Compressive Sensing in XRF scans where data are acquired in a reduced manner
allowing for challenging experiments, currently not feasible with the
traditional scanning strategies. A series of different compressive sensing
strategies for dynamic scans are presented here. A proof of principle
experiment was performed at the TwinMic beamline of Elettra synchrotron. The
outcome demonstrates the potential of Compressive Sensing for dynamic scans,
suggesting its use in challenging scientific experiments while proposing a
technical solution for beamline acquisition software.Comment: 16 pages, 7 figures, 1 tabl
"RaMassays": Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules
SiO2/TiO2 core/shell (T-rex) beads were exploited as "all-in-one" building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices
Utilization of Third-Stage Waste from a Rice Production for Removal of H2S, NO2 and SO2 from Air:
Materials derived from rice husk fly ash were tested as adsorbents of hydrogen sulphide, sulphur dioxide and nitrogen dioxide. Breakthrough experiments were carried out at ambient temperature either in dry or moist air. The second-stage waste obtained in the extraction of silica from fly ash using sodium hydroxide exhibits the better adsorption capacity compared with that of caustic-modified activated carbons. The high performance is related to the presence of residual sodium hydroxide and other metals such as calcium, which react with acidic gases forming corresponding salts. Moreover, a high dispersion of the alkali and alkaline earth metal sites in the mesopores renders the pH of the solution basic, aiding in the dissociation of hydrogen sulphide, thereby facilitating its oxidation. The oxidation of species is also catalyzed by the carbonaceous surface. While in the case of hydrogen sulphide and sulphur dioxide, water helps in acid-base reactions, the opposite effect is found for NO2. Because its react..
Alginate-Derived Active Blend Enhances Adsorption and Photocatalytic Removal of Organic Pollutants in Water
The ever-increasing need for clean water is one of the most urgent sustainable development goals, which requires environmentally-friendly strategies for water remediation against different types of pollutants. In this work, the possibility of using alginate, a biocompatible and natural polysaccharide, is explored for the preparation of both oxide (TiO2, Al2O3, and yttria-stabilized ZrO2 (YSZ)) macrobeads and an active blend of rich carbon nanoparticles, depolymerized alginate, formic acid, and a complex mixture of other organic acids. In particular, the active blend is obtained through low-energy-demanding microwave assisted digestion of sodium alginate solution, and it is used to enhance the decontamination activity of oxide macrobeads in mild conditions (e.g., low temperature, no pH buffers, and visible illumination). It is demonstrated that the alginate-derived active blend obtained without the addition of any other chemicals increases primarily the adsorption capability of oxide macrobeads toward positively charged pollutants (methylene blue, crystal violet, and tetracaine) and, also, the photocatalytic activity of TiO2 during their degradation. Interestingly, functionalization with the obtained alginate-derived active blend enables better performance in comparison with functionalization of its single components or with carbon-dots (C-Dots) obtained with conventional and more energy-demanding hydrothermal methods, enabling them to obtain a fully sustainable, environmentally-friendly system for water remediation
Signal Alignment Problems on Multi-element X-Ray Fluorescence Detectors
X-ray fluorescence (XRF) is a spectroscopic technique with applications in several fields, such as biology, food science and forensics. Often setups have multi-element detectors in order to improve the signal-to-noise ratio. The relative set of produced spectra have to be aligned to a reference spectrum, in a procedure that is referred to as energy calibration, which is necessary for the fitting. Automated methods fail and a manual procedure is typically employed instead. In this paper, we discuss the signal alignment problem of such systems and we illustrate the preliminary results of a new automated method for linear XRF spectra alignment, which potentially can be used also for other time-series like data
Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains
This article has been accepted for publication in Protein Engineering design and Selection Published by Oxford University Press.Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5’end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli. The recombinant fusion hepcidin–ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin–ferroportin interaction in cells and also as drug-delivery agent.This work is partially financed by the Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB) and the Doctoral School of the National Institute of Applied Sciences and Technology (INSAT-Tunis) – University of Carthage
Développement d’un appareil portable de diffraction et fluorescence des rayons X pour l’analyse non-destructive des œuvres d’art
Au début des années 2000, l’impulsion de contrats européens a entraîné le C2RMF dans la conception et la construction d’un appareil portable de fluorescence et diffraction des rayons X (FRX-DRX). Les choix techniques concernant la source et les détecteurs ont conduit à un appareil robuste, qui a été utilisé dans de nombreux pays d’Europe, à la source d’une trentaine de publications dans des revues scientifiques.In the early 2000s, the stimulus of European contracts led the C2RMF teams to design and build a portable X-ray diffraction/X-ray fluorescence (XRD/XRF) device. The technical choices made concerning the source and detectors resulted in a robust device, which has been used in several European countries and produced about thirty or so articles published in scientific journals
Soft X-ray spectromicroscopy using ptychography with randomly phased illumination
Ptychography is a form of scanning diffractive imaging that can successfully retrieve the modulus and phase of both the sample transmission function and the illuminating probe. An experimental difficulty commonly encountered in diffractive imaging is the large dynamic range of the diffraction data. Here we report a novel ptychographic experiment using a randomly phased X-ray probe to considerably reduce the dynamic range of the recorded diffraction patterns. Images can be reconstructed reliably and robustly from this setup, even when scatter from the specimen is weak. A series of ptychographic reconstructions at X-ray energies around the L absorption edge of iron demonstrates the advantages of this method for soft X-ray spectromicroscopy, which can readily provide chemical sensitivity without the need for optical refocusing. In particular, the phase signal is in perfect registration with the modulus signal and provides complementary information that can be more sensitive to changes in the local chemical environment
Biochemical, Biophysical and Functional Characterization of an Insoluble Iron Containing Hepcidin-Ferritin Chimeric Monomer Assembled Together with Human Ferritin H/L Chains at Different Molar Ratios
Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin-ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery
- …