5,781 research outputs found

    Theory Support for the Excited Baryon Program at the Jlab 12 GeV Upgrade

    Get PDF
    This document outlines major directions in theoretical support for the measurement of nucleon resonance transition form factors at the JLab 12 GeV upgrade with the CLAS12 detector. Using single and double meson production, prominent resonances in the mass range up to 2 GeV will be studied in the range of photon virtuality Q2Q^2 up to 12 GeV2^2 where quark degrees of freedom are expected to dominate. High level theoretical analysis of these data will open up opportunities to understand how the interactions of dressed quarks create the ground and excited nucleon states and how these interactions emerge from QCD. The paper reviews the current status and the prospects of QCD based model approaches that relate phenomenological information on transition form factors to the non-perturbative strong interaction mechanisms, that are responsible for resonance formation.Comment: 52 pages, 19 figures, White Paper of the Electromagnetic N-N* Transition Form Factor Workshop at Jefferson Lab, October 13-15, 2008, Newport News, VA, US

    Search for the Cryptoexotic Member of the Baryon Antidecuplet 1/2+ in the Reactions pi- p --> pi- p and pi- p --> K L

    Full text link
    The main goal of this proposal is the search for a narrow cryptoexotic nucleon resonance by scanning of the pi- p system invariant mass in the region (1610-1770) MeV with the detection of pi- p and K Lambda decays. The scan is supposed to be done by the variation of the incident pi- momentum and its measurement with the accuracy of up to +-0.1% (better than 1 MeV in terms of the invariant mass in the whole energy range) with a set of proportional chambers located in the first focus of the magnetooptical channel. High sensitivity of the method to the resonance under search is shown. The secondary particles scattered from a liquid hydrogen target are detected by sets of the wire drift chambers equipped with modern electronics. The time scale of the project is about 3 years. The budget estimate including manpower, the apparatus and operation cost, is about 40 million rubles. The beam time required is (4-6) two week runs on "high" (10 GeV/c) flattop of the ITEP proton synchrotron.Comment: 16 pages, 10 figures. v2: an acknowledge adde

    Crystal Undulator As A Novel Compact Source Of Radiation

    Full text link
    A crystalline undulator (CU) with periodically deformed crystallographic planes is capable of deflecting charged particles with the same strength as an equivalent magnetic field of 1000 T and could provide quite a short period L in the sub-millimeter range. We present an idea for creation of a CU and report its first realization. One face of a silicon crystal was given periodic micro-scratches (grooves), with a period of 1 mm, by means of a diamond blade. The X-ray tests of the crystal deformation have shown that a sinusoidal-like shape of crystalline planes goes through the bulk of the crystal. This opens up the possibility for experiments with high-energy particles channeled in CU, a novel compact source of radiation. The first experiment on photon emission in CU has been started at LNF with 800 MeV positrons aiming to produce 50 keV undulator photons.Comment: Presented at PAC 2003 (Portland, May 12-16

    Flexible Power Modeling of LTE Base Stations

    Get PDF
    With the explosion of wireless communications in number of users and data rates, the reduction of network power consumption becomes more and more critical. This is especially true for base stations which represent a dominant share of the total power in cellular networks. In order to study power reduction techniques, a convenient power model is required, providing estimates of the power consumption in different scenarios. This paper proposes such a model, accurate but simple to use. It evaluates the base station power consumption for different types of cells supporting the 3GPP LTE standard. It is flexible enough to enable comparisons between state-of-the-art and advanced configurations, and an easy adaptation to various scenarios. The model is based on a combination of base station components and sub-components as well as power scaling rules as functions of the main system parameters

    Imaging the essential role of spin-fluctuations in high-Tc superconductivity

    Get PDF
    We have used scanning tunneling spectroscopy to investigate short-length electronic correlations in three-layer Bi2Sr2Ca2Cu3O(10+d) (Bi-2223). We show that the superconducting gap and the energy Omega_dip, defined as the difference between the dip minimum and the gap, are both modulated in space following the lattice superstructure, and are locally anti-correlated. Based on fits of our data to a microscopic strong-coupling model we show that Omega_dip is an accurate measure of the collective mode energy in Bi-2223. We conclude that the collective mode responsible for the dip is a local excitation with a doping dependent energy, and is most likely the (pi,pi) spin resonance.Comment: 4 pages, 4 figure

    Robust entanglement of a micromechanical resonator with output optical fields

    Full text link
    We perform an analysis of the optomechanical entanglement between the experimentally detectable output field of an optical cavity and a vibrating cavity end-mirror. We show that by a proper choice of the readout (mainly by a proper choice of detection bandwidth) one can not only detect the already predicted intracavity entanglement but also optimize and increase it. This entanglement is explained as being generated by a scattering process owing to which strong quantum correlations between the mirror and the optical Stokes sideband are created. All-optical entanglement between scattered sidebands is also predicted and it is shown that the mechanical resonator and the two sideband modes form a fully tripartite-entangled system capable of providing practicable and robust solutions for continuous variable quantum communication protocols

    Carbon budget of an agroforestry system after being converted from a poplar short rotation coppice

    Get PDF
    Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy) was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system. The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was positive (96 ± 40 g C m−2 year−1), highlighting that the system was a net carbon sink (i.e., NBP > 0). However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was −93 ± 56 g C m−2 year−1. In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial effect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley. Additional years of heterotrophic respiration measurements could allow for an estimate of the speed and extent of C losses
    • …
    corecore