4,458 research outputs found
Exoplanet atmospheres with GIANO II. Detection of molecular absorption in the dayside spectrum of HD 102195b
The study of exoplanetary atmospheres is key to understand the differences
between their physical, chemical and dynamical processes. Up to now, the bulk
of atmospheric characterization analysis has been conducted on transiting
planets. On some sufficiently bright targets, high-resolution spectroscopy
(HRS) has also been successfully tested for non-transiting planets. We study
the dayside of the non-transiting planet HD 102195b using the GIANO
spectrograph mounted at TNG, demonstrating the feasibility of atmospheric
characterization measurements and molecular detection for non-transiting
planets with the HRS technique using 4-m class telescopes. The Doppler-shifted
planetary signal changes on the order of many km/s during the observations, in
contrast with the telluric absorption which is stationary in wavelength,
allowing us to remove the contamination from telluric lines while preserving
the features of the planetary spectrum. The emission signal from HD 102195b's
atmosphere is then extracted by cross-correlating the residual spectra with
atmospheric models. We detect molecular absorption from water vapor at
4.4 level. We also find convincing evidence for the presence of
methane, which is detected at the 4.1 level. The two molecules are
detected with a combined significance of 5.3, at a semi-amplitude of
the planet radial velocity km/s. We estimate a planet true mass
of and orbital inclination between 72.5 and
84.79 (1). Our analysis indicates a non-inverted atmosphere
for HD 102195b, as expected given the relatively low temperature of the planet,
inefficient to keep TiO/VO in gas phase. Moreover, a comparison with
theoretical expectations and chemical model predictions corroborates our
methane detection and suggests that the detected and signatures
could be consistent with a low C/O ratio.Comment: 12 pages, 12 figures, accepted for publication in A&
Exoplanet atmospheres with GIANO. I. Water in the transmission spectrum of HD 189733b
High-resolution spectroscopy (R 20,000) at near-infrared wavelengths
can be used to investigate the composition, structure, and circulation patterns
of exoplanet atmospheres. However, up to now it has been the exclusive dominion
of the biggest telescope facilities on the ground, due to the large amount of
photons necessary to measure a signal in high-dispersion spectra. Here we show
that spectrographs with a novel design - in particular a large spectral range -
can open exoplanet characterisation to smaller telescope facilities too. We aim
to demonstrate the concept on a series of spectra of the exoplanet HD 189733 b
taken at the Telescopio Nazionale Galileo with the near-infrared spectrograph
GIANO during two transits of the planet. In contrast to absorption in the
Earth's atmosphere (telluric absorption), the planet transmission spectrum
shifts in radial velocity during transit due to the changing orbital motion of
the planet. This allows us to remove the telluric spectrum while preserving the
signal of the exoplanet. The latter is then extracted by cross-correlating the
residual spectra with template models of the planet atmosphere computed through
line-by-line radiative transfer calculations, and containing molecular
absorption lines from water and methane. By combining the signal of many
thousands of planet molecular lines, we confirm the presence of water vapour in
the atmosphere of HD 189733 b at the 5.5- level. This signal was
measured only in the first of the two observing nights. By injecting and
retrieving artificial signals, we show that the non-detection on the second
night is likely due to an inferior quality of the data. The measured strength
of the planet transmission spectrum is fully consistent with past CRIRES
observations at the VLT, excluding a strong variability in the depth of
molecular absorption lines.Comment: 10 pages, 8 figures. Accepted for publication in Astronomy &
Astrophysics. v2 includes language editin
Ecological notes of the alien species godiva quadricolor (Gastropoda: Nudibranchia) occurring in Faro lake (Italy)
The first record from Sicily of the introduced facelinid nudibranch Godiva quadricolor allowed the detection of trophic relationships with the polycerid Polycera hedgpethi, another non-native nudibranch, and with two bryozoan species, namely the naturalized Cheilostomatida Bugula neritina and the cryptogenic Ctenostomatida Amathia verticillata. The settlement of both nudibranchs was presumably promoted by a trophic shift of P. hedgpethi from the natural prey B. neritina towards the largely available and not exploited A. verticillata. This short food web, without evident links with native fauna and having G. quadricolor as the top predator, is described. A DNA barcoding approach was used to confirm the identity of this facelinid species and to explore the possible genetic divergence occurring among the samples analysed
Machine learning and multidrug-resistant gram-negative bacteria: An interesting combination for current and future research
The dissemination of multidrug-resistant Gram-negative bacteria (MDR-GNB) is associated with increased morbidity and mortality in several countries. Machine learning (ML) is a branch of artificial intelligence that consists of conferring on computers the ability to learn from data. In this narrative review, we discuss three existing examples of the application of ML algorithms for assessing three different types of risk: (i) the risk of developing a MDR-GNB infection, (ii) the risk of MDR-GNB etiology in patients with an already clinically evident infection, and (iii) the risk of anticipating the emergence of MDR in GNB through the misuse of antibiotics. In the next few years, we expect to witness an increasingly large number of research studies perfecting the application of ML techniques in the field of MDR-GNB infections. Very importantly, this cannot be separated from the availability of a continuously refined and updated ethical framework allowing an appropriate use of the large datasets of medical data needed to build efficient ML-based support systems that could be shared through appropriate standard infrastructures
Mediterranean spreading of the bicolor purse oyster, Isognomon bicolor, and the chicken trigger, Malleus sp., vs. the Lessepsian prejudice
The introduction rate of alien species in the Mediterranean Sea is rapidly growing, and their taxonomical identification is increasingly challenging. This uncertain identification often leads to an incorrect estimation of the number of alien species, their route of introduction, and their potential negative effects. This is particularly true for some bivalves, which are characterized by high variation in their shells, resulting in uncertain morphological identification. This is the case for two alien bivalves, i.e., an Isognomonidae and a Malleidae species, both characterized by confused historical colonization records in the Mediterranean Sea, misidentifications, and controversial and changing nomenclatures that have insofar negatively affected our knowledge on their geographical distributions. In this respect, molecular approaches provide a strategy that is especially useful when traditional taxonomy fails, and DNA barcoding is a powerful and well-known tool to obtain reliable identifications through efficient molecular markers. In this work, we used the 16S rRNA marker to assess the preliminary identification of Isognomon sp. and Malleus sp. specimens from different localities in the Southern Mediterranean Sea. Bayesian inference (BI) and maximum likelihood (ML) methods were applied to test the monophyly of the phylogenetic linages and to clarify their taxonomic positions, allowing a complete overview of the colonization and spreading of these two alien bivalves in the Mediterranean Sea. In particular, the Isognomon sp. specimens were identified as the Atlantic I. bicolor, highlighting that previously suggested invasive migration patterns, (i.e., the Lessepsian migration), must be reconsidered with stronger critical attention in light of currently occurring global changes
A Wide Database for a Multicenter Study on Pneumocystis jirovecii Pneumonia in Intensive Care Units
Pneumocystis jirovecii pneumonia (PJP) is an opportunistic fungal infection that may affect patients with immunosuppression. In order to improve the diagnosis accuracy for PJP, facilitating the collection of data across Europe to reliably assess the performance of diagnostic tests for PJP is essential to improve the care of critically ill patients developing this severe condition. Such large data can be collected thanks to the contribution of several European hospitals in the compilation of a dedicated electronic Case Report Form (eCRF). The main focus of this work is to create an interface with high ergonomics both in the compilation and in the subsequent validation of the records
A NLP Pipeline for the Automatic Extraction of a Complete Microorganismâs Picture from Microbiological Notes
The Italian âIstituto Superiore di SanitĂ â (ISS) identifies hospital-acquired infections (HAIs) as the most frequent and serious complications in healthcare. HAIs constitute a real health emergency and, therefore, require decisive action from both local and national health organizations. Information about the causative microorganisms of HAIs is obtained from the results of microbiological cultures of specimens collected from infected body sites, but microorganismsâ names are sometimes reported only in the notes field of the culture reports. The objective of our work was to build a NLP-based pipeline for the automatic information extraction from the notes of microbiological culture reports. We analyzed a sample composed of 499 texts of notes extracted from 1 month of anonymized laboratory referral. First, our system filtered texts in order to remove nonmeaningful sentences. Thereafter, it correctly extracted all the microorganismsâ names according to the expertâs labels and linked them to a set of very important metadata such as the translations into national/international vocabularies and standard definitions. As the major result of our pipeline, the system extracts a complete picture of the microorganism
The HADES RV Programme with HARPS-N at TNG XI. GJ 685 b: a warm super-Earth around an active M dwarf
Small rocky planets seem to be very abundant around low-mass M-type stars.
Their actual planetary population is however not yet precisely understood.
Currently several surveys aim to expand the statistics with intensive detection
campaigns, both photometric and spectroscopic. We analyse 106 spectroscopic
HARPS-N observations of the active M0-type star GJ 685 taken over the past five
years. We combine these data with photometric measurements from different
observatories to accurately model the stellar rotation and disentangle its
signals from genuine Doppler planetary signals in the RV data. We run an MCMC
analysis on the RV and activity indexes time series to model the planetary and
stellar signals present in the data, applying Gaussian Process regression
technique to deal with the stellar activity signals. We identify three periodic
signals in the RV time series, with periods of 9, 24, and 18 d. Combining the
analyses of the photometry of the star with the activity indexes derived from
the HARPS-N spectra, we identify the 18 d and 9 d signals as activity-related,
corresponding to the stellar rotation period and its first harmonic
respectively. The 24 d signals shows no relations with any activity proxy, so
we identify it as a genuine planetary signal. We find the best-fit model
describing the Doppler signal of the newly-found planet, GJ 685\,b,
corresponding to an orbital period d and a
minimum mass M. We also study a
sample of 70 RV-detected M-dwarf planets, and present new statistical evidence
of a difference in mass distribution between the populations of single- and
multi-planet systems, which can shed new light on the formation mechanisms of
low-mass planets around late-type stars.Comment: 18 pages, 13 figures, accepted for publication in A&
Development of a qualitative PCR method for the Alexandrium (Dinophyceae) detection in contaminated mussels (Mytilus galloprovincialis)
Paralytic shellfish poisoning (PSP) is a syndrome caused by the consumption of shellfish contaminated with neurotoxins
produced by organisms of themarine dinoflagellate genus Alexandrium. A. minutum is the mostwidespread species responsible for PSP in theWestern Mediterranean basin. The standard monitoring of shellfish farms for the presence of harmful algae and related toxins usually requires the microscopic examination of phytoplankton populations, bioassays and toxin determination by HPLC. These procedures are time-consuming and require remarkable experience, thus limiting the number of specimens that can be analyzed by a single laboratory unit.Molecular biology techniques may be helpful in the detection of target microorganisms in field samples. In this study, we developed a qualitative PCR assay for the rapid detection of all potentially toxic species belonging to the Alexandrium genus and specifically A. minutum, in contaminated mussels. Alexandrium genus-specific primers were designed to target the 5.8S rDNA region, while an A. minutum species-specific primer was designed to bind in the ITS1 region. The assay was validated using several fixed seawater samples fromthe Mediterranean basin, which were analyzed using PCR along with standard microscopy procedures. The assay provided a rapid method for monitoring the presence of Alexandrium spp. in mussel tissues, as well as in seawater samples. The results showed that PCR is a valid, rapid alternative procedure for the detection of target phytoplankton species either in seawater or directly in mussels, where microalgae can accumulat
The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets
We carried out a Bayesian homogeneous determination of the orbital parameters
of 231 transiting giant planets (TGPs) that are alone or have distant
companions; we employed DE-MCMC methods to analyse radial-velocity (RV) data
from the literature and 782 new high-accuracy RVs obtained with the HARPS-N
spectrograph for 45 systems over 3 years. Our work yields the largest sample of
systems with a transiting giant exoplanet and coherently determined orbital,
planetary, and stellar parameters. We found that the orbital parameters of TGPs
in non-compact planetary systems are clearly shaped by tides raised by their
host stars. Indeed, the most eccentric planets have relatively large orbital
separations and/or high mass ratios, as expected from the equilibrium tide
theory. This feature would be the outcome of high-eccentricity migration (HEM).
The distribution of , where and are the semi-major axis
and the Roche limit, for well-determined circular orbits peaks at 2.5; this
also agrees with expectations from the HEM. The few planets of our sample with
circular orbits and values may have migrated through disc-planet
interactions instead of HEM. By comparing circularisation times with stellar
ages, we found that hot Jupiters with au have modified tidal quality
factors are
required to explain the presence of eccentric planets at the same orbital
distance. As a by-product of our analysis, we detected a non-zero eccentricity
for HAT-P-29; we determined that five planets that were previously regarded to
have hints of non-zero eccentricity have circular orbits or undetermined
eccentricities; we unveiled curvatures caused by distant companions in the RV
time series of HAT-P-2, HAT-P-22, and HAT-P-29; and we revised the planetary
parameters of CoRoT-1b.Comment: 44 pages (16 pages of main text and figures), 11 figures, 5
longtables, published in Astronomy and Astrophysics, Volume 602, A107 (2017).
Tables with new HARPS-N and TRES radial-velocity data (Tables 1 and 2),
stellar parameters (Table 7), orbital parameters and RV jitter (Table 8), and
planet physical parameters (Table 9) are available as ancillary files
(sidebar on the right
- âŠ