52 research outputs found

    Analysis of protein chameleon sequence characteristics

    Get PDF
    Conversion of local structural state of a protein from an α-helix to a ÎČ-strand is usually associated with a major change in the tertiary structure. Similar changes were observed during the self assembly of amyloidogenic proteins to form fibrils, which are implicated in severe diseases conditions, e.g., Alzheimer disease. Studies have emphasized that certain protein sequence fragments known as chameleon sequences do not have a strong preference for either helical or the extended conformations. Surprisingly, the information on the local sequence neighborhood can be used to predict their secondary at a high accuracy level. Here we report a large scale-analysis of chameleon sequences to estimate their propensities to be associated with different local structural states such as α -helices, ÎČ-strands and coils. With the help of the propensity information derived from the amino acid composition, we underline their complexity, as more than one quarter of them prefers coil state over to the regular secondary structures. About half of them show preference for both α-helix and ÎČ-sheet conformations and either of these two states is favored by the rest

    Développement de méthodes bioinformatiques dédiées à la prédiction et l'analyse des réseaux métaboliques et des ARN non codants

    Get PDF
    L'identification des interactions survenant au niveau molĂ©culaire joue un rĂŽle crucial pour la comprĂ©hension du vivant. L'objectif de ce travail a consistĂ© Ă  dĂ©velopper des mĂ©thodes permettant de modĂ©liser et de prĂ©dire ces interactions pour le mĂ©tabolisme et la rĂ©gulation de la transcription. Nous nous sommes basĂ©s pour cela sur la modĂ©lisation de ces systĂšmes sous la forme de graphes et d'automates. Nous avons dans un premier temps dĂ©veloppĂ© une mĂ©thode permettant de tester et de prĂ©dire la distribution du flux au sein d'un rĂ©seau mĂ©tabolique en permettant la formulation d'une Ă  plusieurs contraintes. Nous montrons que la prise en compte des donnĂ©es biologiques par cette mĂ©thode permet de mieux reproduire certains phĂ©notypes observĂ©s in vivo pour notre modĂšle d'Ă©tude du mĂ©tabolisme Ă©nergĂ©tique du parasite Trypanosoma brucei. Les rĂ©sultats obtenus ont ainsi permis de fournir des Ă©lĂ©ments d'explication pour comprendre la flexibilitĂ© du flux de ce mĂ©tabolisme, qui Ă©taient cohĂ©rentes avec les donnĂ©es expĂ©rimentales. Dans un second temps, nous nous sommes intĂ©ressĂ©s Ă  une catĂ©gorie particuliĂšre d'ARN non codants appelĂ©s sRNAs, qui sont impliquĂ©s dans la rĂ©gulation de la rĂ©ponse cellulaire aux variations environnementales. Nous avons dĂ©veloppĂ© une approche permettant de mieux prĂ©dire les interactions qu'ils effectuent avec d'autres ARN en nous basant sur une prĂ©diction des interactions, une analyse par enrichissement du contexte biologique de ces cibles, et en dĂ©veloppant un systĂšme de visualisation spĂ©cialement adaptĂ© Ă  la manipulation de ces donnĂ©es. Nous avons appliquĂ© notre mĂ©thode pour l'Ă©tude des sRNAs de la bactĂ©rie Escherichia coli. Les prĂ©dictions rĂ©alisĂ©es sont apparues ĂȘtre en accord avec les donnĂ©es expĂ©rimentales disponibles, et ont permis de proposer plusieurs nouvelles cibles candidates.The identification of the interactions occurring at the molecular level is crucial to understand the life process. The aim of this work was to develop methods to model and to predict these interactions for the metabolism and the regulation of transcription. We modeled these systems by graphs and automata.Firstly, we developed a method to test and to predict the flux distribution in a metabolic network, which consider the formulation of several constraints. We showed that this method can better mimic the in vivo phenotype of the energy metabolism of the parasite Trypanosoma brucei. The results enabled to provide a good explanation of the metabolic flux flexibility, which were consistent with the experimental data. Secondly, we have considered a particular class of non-coding RNAs called sRNAs, which are involved in the regulation of the cellular response to environmental changes. We developed an approach to better predict their interactions with other RNAs based on the interaction prediction, an enrichment analysis, and by developing a visualization system adapted to the manipulation of these data. We applied our method to the study of the sRNAs interactions within the bacteria Escherichia coli. The predictions were in agreement with the available experimental data, and helped to propose several new target candidates.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Prediction of the intestinal resistome by a three-dimensional structure-based method

    Get PDF
    The intestinal microbiota is considered to be a major reservoir of antibiotic resistance determinants (ARDs) that could potentially be transferred to bacterial pathogens via mobile genetic elements. Yet, this assumption is poorly supported by empirical evidence due to the distant homologies between known ARDs (mostly from culturable bacteria) and ARDs from the intestinal microbiota. Consequently, an accurate census of intestinal ARDs (that is, the intestinal resistome) has not yet been fully determined. For this purpose, we developed and validated an annotation method (called pairwise comparative modelling) on the basis of a three-dimensional structure (homology comparative modelling), leading to the prediction of 6,095 ARDs in a catalogue of 3.9 million proteins from the human intestinal microbiota. We found that the majority of predicted ARDs (pdARDs) were distantly related to known ARDs (mean amino acid identity 29.8%) and found little evidence supporting their transfer between species. According to the composition of their resistome, we were able to cluster subjects from the MetaHIT cohort (n = 663) into six resistotypes that were connected to the previously described enterotypes. Finally, we found that the relative abundance of pdARDs was positively associated with gene richness, but not when subjects were exposed to antibiotics. Altogether, our results indicate that the majority of intestinal microbiota ARDs can be considered intrinsic to the dominant commensal microbiota and that these genes are rarely shared with bacterial pathogens

    PCM : Pairwise Comparative Modelling

    No full text
    PCM is a generic method using homology modelling to increase the specificity of functional prediction of proteins, especially when they are distantly related from proteins for which a function is known. The principle of PCM is to build structural models and assess their relevance using a specific training approach. PCM uses the list of sequences of reference proteins from a given family, the structures related to this family (they will be used as structural templates in the PDB format) and a series of negative references

    Développement de méthodes bioinformatiques dédiées à la prédiction et l'analyse des réseaux métaboliques et des ARN non codants

    No full text
    The identification of the interactions occurring at the molecular level is crucial to understand the life process. The aim of this work was to develop methods to model and to predict these interactions for the metabolism and the regulation of transcription. We modeled these systems by graphs and automata.Firstly, we developed a method to test and to predict the flux distribution in a metabolic network, which consider the formulation of several constraints. We showed that this method can better mimic the in vivo phenotype of the energy metabolism of the parasite Trypanosoma brucei. The results enabled to provide a good explanation of the metabolic flux flexibility, which were consistent with the experimental data. Secondly, we have considered a particular class of non-coding RNAs called sRNAs, which are involved in the regulation of the cellular response to environmental changes. We developed an approach to better predict their interactions with other RNAs based on the interaction prediction, an enrichment analysis, and by developing a visualization system adapted to the manipulation of these data. We applied our method to the study of the sRNAs interactions within the bacteria Escherichia coli. The predictions were in agreement with the available experimental data, and helped to propose several new target candidates.L'identification des interactions survenant au niveau molĂ©culaire joue un rĂŽle crucial pour la comprĂ©hension du vivant. L'objectif de ce travail a consistĂ© Ă  dĂ©velopper des mĂ©thodes permettant de modĂ©liser et de prĂ©dire ces interactions pour le mĂ©tabolisme et la rĂ©gulation de la transcription. Nous nous sommes basĂ©s pour cela sur la modĂ©lisation de ces systĂšmes sous la forme de graphes et d'automates. Nous avons dans un premier temps dĂ©veloppĂ© une mĂ©thode permettant de tester et de prĂ©dire la distribution du flux au sein d'un rĂ©seau mĂ©tabolique en permettant la formulation d'une Ă  plusieurs contraintes. Nous montrons que la prise en compte des donnĂ©es biologiques par cette mĂ©thode permet de mieux reproduire certains phĂ©notypes observĂ©s in vivo pour notre modĂšle d'Ă©tude du mĂ©tabolisme Ă©nergĂ©tique du parasite Trypanosoma brucei. Les rĂ©sultats obtenus ont ainsi permis de fournir des Ă©lĂ©ments d'explication pour comprendre la flexibilitĂ© du flux de ce mĂ©tabolisme, qui Ă©taient cohĂ©rentes avec les donnĂ©es expĂ©rimentales. Dans un second temps, nous nous sommes intĂ©ressĂ©s Ă  une catĂ©gorie particuliĂšre d'ARN non codants appelĂ©s sRNAs, qui sont impliquĂ©s dans la rĂ©gulation de la rĂ©ponse cellulaire aux variations environnementales. Nous avons dĂ©veloppĂ© une approche permettant de mieux prĂ©dire les interactions qu'ils effectuent avec d'autres ARN en nous basant sur une prĂ©diction des interactions, une analyse par enrichissement du contexte biologique de ces cibles, et en dĂ©veloppant un systĂšme de visualisation spĂ©cialement adaptĂ© Ă  la manipulation de ces donnĂ©es. Nous avons appliquĂ© notre mĂ©thode pour l'Ă©tude des sRNAs de la bactĂ©rie Escherichia coli. Les prĂ©dictions rĂ©alisĂ©es sont apparues ĂȘtre en accord avec les donnĂ©es expĂ©rimentales disponibles, et ont permis de proposer plusieurs nouvelles cibles candidates

    Development of bioinformatic methods dedicated to the prediction and the analysis of metabolic networks and non-coding RNA

    No full text
    L'identification des interactions survenant au niveau molĂ©culaire joue un rĂŽle crucial pour la comprĂ©hension du vivant. L'objectif de ce travail a consistĂ© Ă  dĂ©velopper des mĂ©thodes permettant de modĂ©liser et de prĂ©dire ces interactions pour le mĂ©tabolisme et la rĂ©gulation de la transcription. Nous nous sommes basĂ©s pour cela sur la modĂ©lisation de ces systĂšmes sous la forme de graphes et d'automates. Nous avons dans un premier temps dĂ©veloppĂ© une mĂ©thode permettant de tester et de prĂ©dire la distribution du flux au sein d'un rĂ©seau mĂ©tabolique en permettant la formulation d'une Ă  plusieurs contraintes. Nous montrons que la prise en compte des donnĂ©es biologiques par cette mĂ©thode permet de mieux reproduire certains phĂ©notypes observĂ©s in vivo pour notre modĂšle d'Ă©tude du mĂ©tabolisme Ă©nergĂ©tique du parasite Trypanosoma brucei. Les rĂ©sultats obtenus ont ainsi permis de fournir des Ă©lĂ©ments d'explication pour comprendre la flexibilitĂ© du flux de ce mĂ©tabolisme, qui Ă©taient cohĂ©rentes avec les donnĂ©es expĂ©rimentales. Dans un second temps, nous nous sommes intĂ©ressĂ©s Ă  une catĂ©gorie particuliĂšre d'ARN non codants appelĂ©s sRNAs, qui sont impliquĂ©s dans la rĂ©gulation de la rĂ©ponse cellulaire aux variations environnementales. Nous avons dĂ©veloppĂ© une approche permettant de mieux prĂ©dire les interactions qu'ils effectuent avec d'autres ARN en nous basant sur une prĂ©diction des interactions, une analyse par enrichissement du contexte biologique de ces cibles, et en dĂ©veloppant un systĂšme de visualisation spĂ©cialement adaptĂ© Ă  la manipulation de ces donnĂ©es. Nous avons appliquĂ© notre mĂ©thode pour l'Ă©tude des sRNAs de la bactĂ©rie Escherichia coli. Les prĂ©dictions rĂ©alisĂ©es sont apparues ĂȘtre en accord avec les donnĂ©es expĂ©rimentales disponibles, et ont permis de proposer plusieurs nouvelles cibles candidates.The identification of the interactions occurring at the molecular level is crucial to understand the life process. The aim of this work was to develop methods to model and to predict these interactions for the metabolism and the regulation of transcription. We modeled these systems by graphs and automata.Firstly, we developed a method to test and to predict the flux distribution in a metabolic network, which consider the formulation of several constraints. We showed that this method can better mimic the in vivo phenotype of the energy metabolism of the parasite Trypanosoma brucei. The results enabled to provide a good explanation of the metabolic flux flexibility, which were consistent with the experimental data. Secondly, we have considered a particular class of non-coding RNAs called sRNAs, which are involved in the regulation of the cellular response to environmental changes. We developed an approach to better predict their interactions with other RNAs based on the interaction prediction, an enrichment analysis, and by developing a visualization system adapted to the manipulation of these data. We applied our method to the study of the sRNAs interactions within the bacteria Escherichia coli. The predictions were in agreement with the available experimental data, and helped to propose several new target candidates

    Development of bioinformatic methods dedicated to the prediction and the analysis of metabolic networks and non-coding RNA

    No full text
    L'identification des interactions survenant au niveau molĂ©culaire joue un rĂŽle crucial pour la comprĂ©hension du vivant. L'objectif de ce travail a consistĂ© Ă  dĂ©velopper des mĂ©thodes permettant de modĂ©liser et de prĂ©dire ces interactions pour le mĂ©tabolisme et la rĂ©gulation de la transcription. Nous nous sommes basĂ©s pour cela sur la modĂ©lisation de ces systĂšmes sous la forme de graphes et d'automates. Nous avons dans un premier temps dĂ©veloppĂ© une mĂ©thode permettant de tester et de prĂ©dire la distribution du flux au sein d'un rĂ©seau mĂ©tabolique en permettant la formulation d'une Ă  plusieurs contraintes. Nous montrons que la prise en compte des donnĂ©es biologiques par cette mĂ©thode permet de mieux reproduire certains phĂ©notypes observĂ©s in vivo pour notre modĂšle d'Ă©tude du mĂ©tabolisme Ă©nergĂ©tique du parasite Trypanosoma brucei. Les rĂ©sultats obtenus ont ainsi permis de fournir des Ă©lĂ©ments d'explication pour comprendre la flexibilitĂ© du flux de ce mĂ©tabolisme, qui Ă©taient cohĂ©rentes avec les donnĂ©es expĂ©rimentales. Dans un second temps, nous nous sommes intĂ©ressĂ©s Ă  une catĂ©gorie particuliĂšre d'ARN non codants appelĂ©s sRNAs, qui sont impliquĂ©s dans la rĂ©gulation de la rĂ©ponse cellulaire aux variations environnementales. Nous avons dĂ©veloppĂ© une approche permettant de mieux prĂ©dire les interactions qu'ils effectuent avec d'autres ARN en nous basant sur une prĂ©diction des interactions, une analyse par enrichissement du contexte biologique de ces cibles, et en dĂ©veloppant un systĂšme de visualisation spĂ©cialement adaptĂ© Ă  la manipulation de ces donnĂ©es. Nous avons appliquĂ© notre mĂ©thode pour l'Ă©tude des sRNAs de la bactĂ©rie Escherichia coli. Les prĂ©dictions rĂ©alisĂ©es sont apparues ĂȘtre en accord avec les donnĂ©es expĂ©rimentales disponibles, et ont permis de proposer plusieurs nouvelles cibles candidates.The identification of the interactions occurring at the molecular level is crucial to understand the life process. The aim of this work was to develop methods to model and to predict these interactions for the metabolism and the regulation of transcription. We modeled these systems by graphs and automata.Firstly, we developed a method to test and to predict the flux distribution in a metabolic network, which consider the formulation of several constraints. We showed that this method can better mimic the in vivo phenotype of the energy metabolism of the parasite Trypanosoma brucei. The results enabled to provide a good explanation of the metabolic flux flexibility, which were consistent with the experimental data. Secondly, we have considered a particular class of non-coding RNAs called sRNAs, which are involved in the regulation of the cellular response to environmental changes. We developed an approach to better predict their interactions with other RNAs based on the interaction prediction, an enrichment analysis, and by developing a visualization system adapted to the manipulation of these data. We applied our method to the study of the sRNAs interactions within the bacteria Escherichia coli. The predictions were in agreement with the available experimental data, and helped to propose several new target candidates

    Genome-wide detection of sRNA targets with rNAV

    Get PDF
    International audienceThe central dogma in molecular biology postulated that 'DNA makes RNA makes protein', however this dogma has been recently extended to integrate new biological activities involving small non- coding RNAs, called sRNAs. Accordingly, an increasing attention has been given to these molecules over the last decade and related experimental works have shown a wide range of functional activ- ities for these molecules. In this paper, we present rNAV (for rna NAVigator), a new tool for the visual exploration and analysis of sRNA-mediated regulatory networks. rNAV has been designed to help bioinformaticians and biologists to identify, from list of thou- sands of predictions, pertinent and reasonable sRNAs and target candidates for carrying out experimental validations. We propose a list of dedicated algorithms and interaction tools that facilitate the exploration of such networks. These algorithms can be gathered into pipelines which can then be saved and reuse over several sessions. To support exploration awareness, rNAV also provides an exploration tree view that allows to navigate through the steps of the analysis but also to select the -sub-networks to visualize and compare. These comparisons are facilitated by the integration of multiple and fully linked views. We demonstrate the usefulness of our approach by a case study on Escherichia coli bacteria performed by domain experts

    Combined bacterial and fungal intestinal microbiota analyses: Impact of storage conditions and DNA extraction protocols

    No full text
    Background The human intestinal microbiota contains a vast community of microorganisms increasingly studied using high-throughput DNA sequencing. Standardized protocols for storage and DNA extraction from fecal samples have been established mostly for bacterial microbiota analysis. Here, we investigated the impact of storage and DNA extraction on bacterial and fungal community structures detected concomitantly. Methods Fecal samples from healthy adults were stored at -80'C as such or diluted in RNAlater0 and subjected to 2 extraction protocols with mechanical lysis: the Powersoil (R) MoBio kit or the International Human Microbiota Standard (IHMS) Protocol Q. Libraries of the 12 samples targeting the V3-V4 16S and the ITS1 regions were prepared using Metabiote (R) (Genoscreen) and sequenced on GS-FLX-454. Sequencing data were analysed using SHAMAN (http://shaman.pasteur.fr/). The bacterial and fungal microbiota were compared in terms of diversity and relative abundance. Results We obtained 171869 and 199089 quality-controlled reads for 16S and ITS, respectively. All 16S reads were assigned to 41 bacterial genera; only 52% of ITS reads were assigned to 40 fungal genera/section. Rarefaction curves were satisfactory in 3/3 and 2/3 subjects for 16S and ITS, respectively. PCoA showed important inter-individual variability of intestinal microbiota largely overweighing the effect of storage or extraction. Storage in RNAlater (R) impacted (downward trend) the relative abundances of 7/41 bacterial and 6/40 fungal taxa, while extraction impacted randomly 18/41 bacterial taxa and 1/40 fungal taxon. Conclusion Our results showed that RNAlater (R) moderately impacts bacterial or fungal community structures, while extraction significantly influences the bacterial composition. For combined bacterial and fungal intestinal microbiota analysis, immediate sample freezing should be preferred when feasible, but storage in RNAlater (R) remains an option under unfavourable conditions or for concomitant metatranscriptomic analysis; and extraction should rely on protocols validated for bacterial analysis, such as IHMS Protocol Q, and including a powerful mechanical lysis, essential for fungal extraction

    Flux Analysis of the Trypanosoma brucei Glycolysis Based on a Multiobjective-Criteria Bioinformatic Approach

    Get PDF
    Trypanosoma brucei is a protozoan parasite of major of interest in discovering new genes for drug targets. This parasite alternates its life cycle between the mammal host(s) (bloodstream form) and the insect vector (procyclic form), with two divergent glucose metabolism amenable to in vitro culture. While the metabolic network of the bloodstream forms has been well characterized, the flux distribution between the different branches of the glucose metabolic network in the procyclic form has not been addressed so far. We present a computational analysis (called Metaboflux) that exploits the metabolic topology of the procyclic form, and allows the incorporation of multipurpose experimental data to increase the biological relevance of the model. The alternatives resulting from the structural complexity of networks are formulated as an optimization problem solved by a metaheuristic where experimental data are modeled in a multiobjective function. Our results show that the current metabolic model is in agreement with experimental data and confirms the observed high metabolic flexibility of glucose metabolism. In addition, Metaboflux offers a rational explanation for the high flexibility in the ratio between final products from glucose metabolism, thsat is, flux redistribution through the malic enzyme steps
    • 

    corecore