1,665 research outputs found

    Temperature and pressure behavior of the emission bands from Mn-, Cu-, and Eu-doped ZnS nanocrystals

    Get PDF
    The Mn-, Cu- and Eu-doped ZnS nanocrystals (NC) were analyzed for temeperature and pressure dependence of photoluminescence. The thermal quenching behavior of characteristic emission bands reflected nature of different transition mechanisms. The energies of Mn-orange and Eu-green emissions were observed to be weakly dependent on temperature. The results show strong interaction between excited state of Eu2+ ions and conduction band of ZnS which was responsible for positive pressure coefficient.published_or_final_versio

    Preoperative radiological characterization of hepatic angiomyolipoma using magnetic resonance imaging and contrast-enhanced ultrasonography: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A hepatic angiomyolipoma is a rare benign tumor of the liver composed of a mixture of smooth muscle cells, blood vessels and a variable amount of adipose tissue. Differentiating them from malignant liver tumors can often be very difficult.</p> <p>Case presentation</p> <p>We report the case of a 43-year-old Caucasian man presenting with a large liver mass in the right lobe. The results of magnetic resonance imaging and contrast-enhanced ultrasonography were consistent with a well-demarcated adipose tissue- containing tumor, showing prolonged hyperperfusion in comparison with the surrounding liver tissue. Surgery was performed and the diagnosis of hepatic angiomyolipoma was made with histopathology.</p> <p>Conclusion</p> <p>Preoperative radiological characterization using magnetic resonance imaging and contrast-enhanced ultrasonography may improve diagnostic accuracy of hepatic angiomyolipoma. Identification of smooth muscle cells, blood vessels and adipose tissue with a positive immunohistochemical reaction for HMB-45 is the final evidence for an angiomyolipoma.</p

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Smoking among Young Rural to Urban Migrant Women in China: A Cross-Sectional Survey

    Get PDF
    Rural-to-urban migrant women may be vulnerable to smoking initiation as they are newly exposed to risk factors in the urban environment. We sought to identify correlates of smoking among rural-to-urban migrant women in China.A cross-sectional survey of rural-to-urban migrant women working in restaurants and hotels (RHW) and those working as commercial sex workers (CSW) was conducted in ten provincial capital cities in China. Multiple logistic regression was conducted to identify correlates of smoking. We enrolled 2229 rural-to-urban migrant women (1697 RHWs aged 18–24 years and 532 CSWs aged 18–30 years). Of these, 18.4% RHWs and 58.3% CSWs reported ever tried smoking and 3.2% RHWs and 41.9% CSWs reported current smoking. Participants who first tried smoking after moving to the city were more likely to be current smokers compared to participants who first tried smoking before moving to the city (25.3% vs. 13.8% among RHWs, p = 0.02; 83.6% vs. 58.6% among CSWs, p = <0.01). Adjusting for other factors, “tried female cigarette brands” had the strongest association with current smoking (OR 5.69, 95%CI 3.44 to 9.41) among participants who had ever tried smoking.Exposure to female cigarette brands may increase the susceptibility to smoking among rural-to-urban migrant women. Smoke-free policies and increased taxes may be effective in preventing rural-to-urban migrant women from smoking initiation

    Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Direct electrical activation of skeletal muscles of patients with upper motor neuron lesions can restore functional movements, such as standing or walking. Because responses to electrical stimulation are highly nonlinear and time varying, accurate control of muscles to produce functional movements is very difficult. Accurate and predictive mathematical models can facilitate the design of stimulation patterns and control strategies that will produce the desired force and motion. In the present study, we build upon our previous isometric model to capture the effects of constant angular velocity on the forces produced during electrically elicited concentric contractions of healthy human quadriceps femoris muscle. Modelling the isovelocity condition is important because it will enable us to understand how our model behaves under the relatively simple condition of constant velocity and will enable us to better understand the interactions of muscle length, limb velocity, and stimulation pattern on the force produced by the muscle.</p> <p>Methods</p> <p>An additional term was introduced into our previous isometric model to predict the force responses during constant velocity limb motion. Ten healthy subjects were recruited for the study. Using a KinCom dynamometer, isometric and isovelocity force data were collected from the human quadriceps femoris muscle in response to a wide range of stimulation frequencies and patterns. % error, linear regression trend lines, and paired t-tests were used to test how well the model predicted the experimental forces. In addition, sensitivity analysis was performed using Fourier Amplitude Sensitivity Test to obtain a measure of the sensitivity of our model's output to changes in model parameters.</p> <p>Results</p> <p>Percentage RMS errors between modelled and experimental forces determined for each subject at each stimulation pattern and velocity showed that the errors were in general less than 20%. The coefficients of determination between the measured and predicted forces show that the model accounted for ~86% and ~85% of the variances in the measured force-time integrals and peak forces, respectively.</p> <p>Conclusion</p> <p>The range of predictive abilities of the isovelocity model in response to changes in muscle length, velocity, and stimulation frequency for each individual make it ideal for dynamic applications like FES cycling.</p

    A Cross-Lingual Similarity Measure for Detecting Biomedical Term Translations

    Get PDF
    Bilingual dictionaries for technical terms such as biomedical terms are an important resource for machine translation systems as well as for humans who would like to understand a concept described in a foreign language. Often a biomedical term is first proposed in English and later it is manually translated to other languages. Despite the fact that there are large monolingual lexicons of biomedical terms, only a fraction of those term lexicons are translated to other languages. Manually compiling large-scale bilingual dictionaries for technical domains is a challenging task because it is difficult to find a sufficiently large number of bilingual experts. We propose a cross-lingual similarity measure for detecting most similar translation candidates for a biomedical term specified in one language (source) from another language (target). Specifically, a biomedical term in a language is represented using two types of features: (a) intrinsic features that consist of character n-grams extracted from the term under consideration, and (b) extrinsic features that consist of unigrams and bigrams extracted from the contextual windows surrounding the term under consideration. We propose a cross-lingual similarity measure using each of those feature types. First, to reduce the dimensionality of the feature space in each language, we propose prototype vector projection (PVP)—a non-negative lower-dimensional vector projection method. Second, we propose a method to learn a mapping between the feature spaces in the source and target language using partial least squares regression (PLSR). The proposed method requires only a small number of training instances to learn a cross-lingual similarity measure. The proposed PVP method outperforms popular dimensionality reduction methods such as the singular value decomposition (SVD) and non-negative matrix factorization (NMF) in a nearest neighbor prediction task. Moreover, our experimental results covering several language pairs such as English–French, English–Spanish, English–Greek, and English–Japanese show that the proposed method outperforms several other feature projection methods in biomedical term translation prediction tasks

    Vesicle-Like Biomechanics Governs Important Aspects of Nuclear Geometry in Fission Yeast

    Get PDF
    It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the nucleus of interphase cells

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio
    corecore