953 research outputs found

    Ontology-based Domain Diversity Profiling of User Comments

    Get PDF
    Diversity has been the subject of study in various disciplines from biology to social science and computing. Respecting and utilising the diversity of the population is increasingly important to broadening knowledge. This paper describes a pipeline for diversity profiling of a pool of text in order to understand its coverage of an underpinning domain. The application is illustrated by using a domain ontology on presentation skills in a case study with 38 postgraduates who made comments while learning pitch presentations with the Active Video Watching system (AVW-Space). The outcome shows different patterns of coverage on the domain by the comments in each of the eight videos

    Extinction times in the subcritical stochastic SIS logistic epidemic

    Get PDF
    Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size NN. We study the behaviour of the process as the population size NN tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as N→∞N \to \infty but more slowly than N−1/2N^{-1/2}. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure

    We are all teacher educators now: understanding school-based teacher educators in times of change in England

    Get PDF
    Within the context of the European Commission’s recent policy gaze on teacher education (European Commission, Improving teacher quality: The EU agenda – lifelong learning: policies and programme. Brussels, April 2010, EAC.B.2. D (2010) PSH, 2010; European Commission, Supporting teacher educators for better learning outcomes. European Commission, Brussels, 2013; European Commission, Strengthening teaching in Europe: new evidence from teachers compiled by Eurydice and CRELL, June 2015. Available from: http://ec.europa.eu/education/library/policy/teaching-profession-practices_en.pdf, 2015), this chapter contributes to an improved understanding of the hybrid, poly-contextualised identities of school-based teacher educators. At a time of systemic change in the education systems of many countries, teachers in schools are increasingly being asked to be responsible for the education and training of future teachers. Within the English backdrop of a rapidly changing landscape for teacher education, we present initial findings from a small-scale study exploring, through interview data, how the knowledge bases and identities of two groups of insiders, university and school-based teacher educators, were perceived by those hybrid teacher educators (Zeichner 2010) working in schools. Our findings reveal differences in school-based teacher educators’ views on their work and the work of university-based teacher educators, school-based teacher educators’ views on the role educational research has in the work they do and the ways in which different professional pathways (e.g. occupational/university; primary/secondary) influence views on what it means to be a teacher educator

    Distortions of Subjective Time Perception Within and Across Senses

    Get PDF
    Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions

    Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm's sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms (Springer, 2014). arXiv admin note: substantial text overlap with arXiv:1304.7465, arXiv:1209.196

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    Benefits of Stimulus Congruency for Multisensory Facilitation of Visual Learning

    Get PDF
    Background. Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning. Methodology/Principle Findings. Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Comparing performance on visual-only trials, we find that training with congruent audiovisual stimuli produces significantly better learning than training with incongruent audiovisual stimuli or with only visual stimuli. Conclusions/ Significance. This advantage from stimulus congruency during training suggests that the benefits of multisensory training may result from audiovisual interactions at a perceptual rather than cognitive level

    Individualism and stock price crash risk

    Get PDF
    Employing a sample of 26,473 firms across 42 countries from 1990 to 2013, we find that firms located in countries with higher individualism have higher stock price crash risk. Furthermore, individualism can be transmitted by foreign investors from overseas markets to influence local firms’ crash risk, and can exacerbate the impact of firm risk taking and earnings management on crash risk. Moreover, the positive relation between individualism and crash risk is amplified during the global financial crisis and attenuated by enhanced country-level financial information transparency and the adoption of International Financial Reporting Standards

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag
    • …
    corecore