48 research outputs found

    A Switch in Hepatic Cortisol Metabolism across the Spectrum of Non Alcoholic Fatty Liver Disease

    Get PDF
    Context: Non alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH) and cirrhosis. The potential role of glucocorticoids (GC) in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushing's syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F) from inactive cortisone (E) (11Ξ²-hydroxysteroid dehydrogenase type 1, 11Ξ²-HSD1), or inactivate cortisol through A-ring metabolism (5Ξ±- and 5Ξ²-reductase, 5Ξ±R and 5Ξ²R). Objective and Methods: In vitro studies defined 11Ξ²-HSD1 expression in normal and NASH liver samples. We then characterised hepatic cortisol metabolism in 16 patients with histologically proven NAFLD compared to 32 obese controls using gas chromatographic analysis of 24 hour urine collection and plasma cortisol generation profile following oral cortisone. Results: In patients with steatosis 5Ξ±R activity was increased, with a decrease in hepatic 11Ξ²-HSD1 activity. Total cortisol metabolites were increased in this group consistent with increased GC production rate. In contrast, in patients with NASH, 11Ξ²-HSD1 activity was increased both in comparison to patients with steatosis, and controls. Endorsing these findings, 11Ξ²-HSD1 mRNA and immunostaining was markedly increased in NASH patients in peri septal hepatocytes and within CD68 positive macrophages within inflamed cirrhotic septa. Conclusion: Patients with hepatic steatosis have increased clearance and decreased hepatic regeneration of cortisol and we propose that this may represent a protective mechanism to decrease local GC availability to preserve hepatic metabolic phenotype. With progression to NASH, increased 11Ξ²-HSD1 activity and consequent cortisol regeneration may serve to limit hepatic inflammation

    The Rac GTP Exchange Factor TIAM-1 Acts with CDC-42 and the Guidance Receptor UNC-40/DCC in Neuronal Protrusion and Axon Guidance

    Get PDF
    The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions

    The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus

    Get PDF
    Tsetse fly (Diptera; Glossinidae) transmits two devastating diseases to farmers (human African Trypanosomiasis; HAT) and their livestock (Animal African Trypanosomiasis; AAT) in 37 sub-Saharan African countries. During the rainy seasons, vast areas of fertile, arable land remain uncultivated as farmers flee their homes due to the presence of tsetse. Available drugs against trypanosomiasis are ineffective and difficult to administer. Control of the tsetse vector by Sterile Insect Technique (SIT) has been effective. This method involves repeated release of sterilized males into wild tsetse populations, which compete with wild type males for females. Upon mating, there is no offspring, leading to reduction in tsetse populations and thus relief from trypanosomiasis. The SIT method requires large-scale tsetse rearing to produce sterile males. However, tsetse colony productivity is hampered by infections with the salivary gland hypertrophy virus, which is transmitted via saliva as flies take blood meals during membrane feeding and often leads to colony collapse. Here, we investigated the salivary gland secretome proteins of virus-infected tsetse to broaden our understanding of virus infection, transmission and pathology. By this approach, we obtain insight in tsetse-hytrosavirus interactions and identified potential candidate proteins as targets for developing biotechnological strategies to control viral infections in tsetse colonies

    Loss of 5Ξ±-reductase type 1 accelerates the development of hepatic steatosis but protects against hepatocellular carcinoma in male mice.

    No full text
    Nonalcoholic fatty liver disease (NAFLD) has been associated with glucocorticoid excess and androgen deficiency, yet in the majority of patients with steatohepatitis, circulating cortisol and androgen levels are normal. The enzyme 5Ξ±-reductase (5Ξ±R) has a critical role in androgen and glucocorticoid action. We hypothesize that 5Ξ±R has an important role in the pathogenesis of steatohepatitis through regulation of intracrine/paracrine hormone availability. Human liver samples from patients with NAFLD and normal donor tissue were used for gene expression and immunohistochemical analysis. NAFLD samples were scored using the Kleiner classification. In addition, 5Ξ±R1(-/-), 5Ξ±R2(-/-), and wild-type (WT) mice were fed normal chow or American lifestyle-induced obesity syndrome (ALIOS) diet for 6 or 12 months. Liver histology was graded and staged. Hepatic and circulating free fatty acid and triglyceride levels were quantified, and gene and protein expression was measured by real-time PCR and immunohistochemistry. 5Ξ±R1 and -2 were highly expressed in human liver, and 5Ξ±R1 protein expression increased with severity of NAFLD. 5Ξ±R1(-/-) (but not 5Ξ±R2(-/-)) mice fed an ALIOS diet developed greater hepatic steatosis than WT mice, and hepatic mRNA expression of genes involved in insulin signaling was decreased. Furthermore, 60% of WT mice developed focal hepatocellular lesions consistent with hepatocellular carcinoma after 12 months of the ALIOS diet, compared with 20% of 5Ξ±R2(-/-) and 0% of 5Ξ±R1(-/-) mice (P < .05). 5Ξ±R1 deletion accelerates the development of hepatic steatosis but may protect against the development of NAFLD-related hepatocellular neoplasia and therefore has potential as a therapeutic target

    Evaluation of the mechanisms of sarcopenia in chronic inflammatory disease: protocol for a prospective cohort study

    No full text
    BACKGROUND Several chronic inflammatory diseases co-exist with and accelerate sarcopenia (reduction in muscle strength, function and mass) and negatively impact on both morbidity and mortality. There is currently limited research on the extent of sarcopenia in such conditions, how to accurately assess it and whether there are generic or disease-specific mechanisms driving sarcopenia. Therefore, this study aims to identify potential mechanisms driving sarcopenia within chronic inflammatory disease via a multi-modal approach; in an attempt to help define potential interventions for future use. METHODS This prospective cohort study will consist of a multi-modal assessment of sarcopenia and its underlying mechanisms. Recruitment will target three chronic inflammatory diseases: chronic liver disease (CLD) (n=50), with a subset of NAFLD (n=20), inflammatory bowel disease (IBD) (n=50) and rheumatoid arthritis (RA) (n=50) both before and after therapeutic intervention. In addition, 20 age and sex matched healthy individuals will be recruited for comparison. Participants will undergo 4 assessment visits at weeks 0, 2, 12 and 24. Visits will consist of the following assessments: blood tests, anthropometrics, functional assessment, quadriceps muscle imaging, actigraphy, quality of life questionnaires, food diary collection and muscle biopsy of the vastus lateralis (at weeks 2 and 24 only). In addition, stool and urine samples will be collected for future microbiome and metabolomics analysis. DISCUSSION This is the first study to use a multi-modal assessment model to phenotype sarcopenia in these chronic inflammatory diseases. We hope to identify generic as well as disease-specific mechanisms driving sarcopenia. We appreciate that these cohorts do require separate standards of care treatments which limit comparison between groups. ETHICS AND DISSEMINATION The study is approved by the Health Research Authority - West Midlands Solihull Research Ethics Service Committee Authority (REC reference: 18/WM/0167). Recruitment commenced in January 2019 and will continue until July 2021. The study was halted in March 2020 and again in January 2021 with the COVID-19 pandemic. The findings will be disseminated through peer-reviewed publications and conference presentations. All data will be stored on a secure server. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04734496
    corecore