136 research outputs found

    The colonization history of British water vole (Arvicola amphibius (Linnaeus, 1758)): origins and development of the Celtic fringe.

    Get PDF
    The terminal Pleistocene and Early Holocene, a period from 15 000 to 18 000 Before Present (BP), was critical in establishing the current Holarctic fauna, with temperate-climate species largely replacing cold-adapted ones at mid-latitudes. However, the timing and nature of this process remain unclear for many taxa, a point that impacts on current and future management strategies. Here, we use an ancient DNA dataset to test more directly postglacial histories of the water vole (Arvicola amphibius, formerly A terrestris), a species that is both a conservation priority and a pest in different parts of its range. We specifically examine colonization of Britain, where a complex genetic structure can be observed today. Although we focus on population history at the limits of the species' range, the inclusion of additional European samples allows insights into European postglacial colonization events and provides a molecular perspective on water vole taxonomy

    Comparative Chromosome Maps of Neotropical Rodents Necromys lasiurus and Thaptomys nigrita (Cricetidae) Established by ZOO-FISH

    Get PDF
    This work presents chromosome homology maps between Mus musculus (MMU) and 2 South American rodent species from the Cricetidae group: Necromys lasiurus (NLA, 2n = 34) and Thaptomys nigrita (TNI, 2n = 52), established by ZOO-FISH using mouse chromosome-specific painting probes. Extending previous molecular cytogenetic studies in Neotropical rodents, the purpose of this work was to delineate evolutionary chromosomal rearrangements in Cricetidae rodents and to reconstruct the phylogenetic relationships among the Akodontini species. Our phylogenetic reconstruction by maximum parsimony analysis of chromosomal characters confirmed one consistent clade of all Neotropical rodents studied so far. In both species analyzed here, we observed the syntenic association of chromosome segments homologous to MMU 8/13, suggesting that this chromosome form is a synapomorphic trait exclusive to Neotropical rodents. Further, the previously described Akodontini-specific syntenic associations MMU 3/18 and MMU 6/12 were observed in N. lasiurus but not in T. nigrita, although the latter species is considered a member of the Akodontini tribe by some authors. Finally, and in agreement with this finding, N. lasiurus and Akodon serrensis share the derived fission of MMU 13, which places them as basal sister clades within Akodontini. Copyright (C) 2011 S. Karger AG, Base

    Multiple Geographic Origins of Commensalism and Complex Dispersal History of Black Rats

    Get PDF
    The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats

    Karyology of the Atlantic forest rodent Juliomys (Cricetidae): A new karyotype from southern Brazil

    Get PDF
    Juliomys is a small rodent from the family Cricetidae which inhabits the Atlantic forest and forests from Argentina to eastern Brazil. The three species recognized so far have different karyotypes. In this paper, we describe a new karyotype with 2n = 32, FN = 48 found in Juliomys specimens from a high-altitude area in the Atlantic forest of southern Brazil. The karyotype was analyzed after G- and C-banding and silver staining of the nucleolus organizer regions (Ag-NOR) and its G-banding patterns were compared with those of the newly described species Juliomys ossitenuis (2n = 20, FN = 36). The 2n = 32 karyomorph presented peculiar features and was very different from those of the other species of the genus: J. pictipes (2n = 36, FN = 34), J. rimofrons (2n = 20, FN = 34) and J. ossitenuis (2n = 20, FN = 36). Differences were mostly due to centric and tandem fusions, pericentric inversion and loss of heterochromatin. The karyotype represents a powerful tool to differentiate Juliomys species and our data suggest that the karyotype described herein belongs to a new species

    Thaptomys Thomas 1915 (Rodentia, Sigmodontinae, Akodontini) with karyotypes 2n = 50, FN = 48, and 2n = 52, FN = 52: Two monophyletic lineages recovered by molecular phylogeny

    Get PDF
    A novel karyotype with 2n = 50, FN = 48, was described for specimens of Thaptomys collected at Una, State of Bahia, Brazil, which are morphologically indistinguishable from Thaptomys nigrita, 2n = 52, FN = 52, found in other localities. It was hence proposed that the 2n = 50 karyotype could belong to a distinct species, cryptic of Thaptomys nigrita, once chromosomal rearrangements observed, along with the geographic distance, might represent a reproductive barrier between both forms. Phylogenetic analyses using maximum parsimony and maximum likelihood based on partial cytochrome b sequences with 1077 bp were performed, attempting to establish the relationships among the individuals with distinct karyotypes along the geographic distribution of the genus; the sample comprised 18 karyotyped specimens of Thaptomys, encompassing 15 haplotypes, from eight different localities of the Atlantic Rainforest. The intra-generic relationships corroborated the distinct diploid numbers, once both phylogenetic reconstructions recovered two monophyletic lineages, a northeastern clade grouping the 2n = 50 and a southeastern clade with three subclades, grouping the 2n = 52 karyotype. The sequence divergence observed between their individuals ranged from 1.9% to 3.5%

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Phylogeographic Study of Apodemus ilex (Rodentia: Muridae) in Southwest China

    Get PDF
    BACKGROUND: The Mountains of southwest China have complex river systems and a profoundly complex topography and are among the most important biodiversity hotspots in the world. However, only a few studies have shed light on how the mountains and river valleys promote genetic diversity. Apodemus ilex is a fine model for investigating this subject. METHODOLOGY/PRINCIPAL FINDINGS: To assess the genetic diversity and biogeographic patterns of Apodemus ilex, the complete cytochrome b gene sequences (1,140 bp) were determined from 203 samples of A. draco/ilex that were collected from southwest China. The results obtained suggested that A. ilex and A. draco are sistergroups and diverged from each other approximately 2.25 million years ago. A. ilex could be divided into Eastern and Western phylogroups, each containing two sub-groups and being widespread in different geographical regions of the southern Hengduan Mountains and the western Yunnan - Guizhou Plateau. The population expansions of A. ilex were roughly from 0.089 Mya to 0.023 Mya. CONCLUSIONS: Our result suggested that A. ilex is a valid species rather than synonym of A. draco. As a middle-high elevation inhabitant, the phylogenetic pattern of A. ilex was strongly related to the complex geographical structures in southwest China, particularly the existence of deep river valley systems, such as the Mekong and Salween rivers. Also, it appears that the evolutionary history of A. ilex, such as lineage divergences and population expansions were strongly affected by climate fluctuation in the Late Pleistocene

    Mosaic Convergence of Rodent Dentitions

    Get PDF
    BACKGROUND:Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity. METHODOLOGY/PRINCIPAL FINDINGS:Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology. CONCLUSION/SIGNIFICANCE:The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent pathways imply distinct ontogenetic trajectories, new Evo/Devo comparative studies on cusp morphogenesis are necessary

    Evolutionary relationships and divergence times among the native rats of Australia

    Get PDF
    Background The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats. There are uncertainties regarding the number of species within the group and the relationships among them. We analysed 16 mitochondrial genomes, including seven novel genomes from six species, to help elucidate the evolutionary history of the Australian rats. We also demonstrate, from a larger dataset, the usefulness of short regions of the mitochondrial genome in identifying these rats at the species level. Results Analyses of 16 mitochondrial genomes representing species sampled from Australo-Papuan and Asian clades of Rattus indicate divergence of these two groups ~2.7 million years ago (Mya). Subsequent diversification of at least 4 lineages within the Australo-Papuan clade was rapid and occurred over the period from ~ 0.9-1.7 Mya, a finding that explains the difficulty in resolving some relationships within this clade. Phylogenetic analyses of our 126 taxon, but shorter sequence (1952 nucleotides long), Rattus database generally give well supported species clades. Conclusions Our whole mitochondrial genome analyses are concordant with a taxonomic division that places the native Australian rats into the Rattus fuscipes species group. We suggest the following order of divergence of the Australian species. R. fuscipes is the oldest lineage among the Australian rats and is not part of a New Guinean radiation. R. lutreolus is also within this Australian clade and shallower than R. tunneyi while the R. sordidus group is the shallowest lineage in the clade. The divergences within the R. sordidus and R. leucopus lineages occurring about half a million years ago support the hypotheses of more recent interchanges of rats between Australia and New Guinea. While problematic for inference of deeper divergences, we report that the analysis of shorter mitochondrial sequences is very useful for species identification in rats
    corecore