1,420 research outputs found

    Extracting structural information of Au colloids at ultra-dilute concentrations: Identification of growth during nanoparticle immobilization

    Get PDF
    Sol-immobilization is increasingly used to achieve supported metal nanoparticles (NPs) with controllable size and shape; it affords a high degree of control of the metal particle size and yields a narrow particle size distribution. Using state-of-the-art beamlines, we demonstrate how X-ray absorption fine structure (XAFS) techniques are now able to provide accurate structural information on nano-sized colloidal Au solutions at mM concentrations. This study demonstrates: (i) the size of Au colloids can be accurately tuned by adjusting the temperature of reduction, (ii) Au concentration, from 50 mM to 1000 mM, has little influence on the average size of colloidal Au NPs in solution and (iii) the immobilization step is responsible for significant growth in Au particle size, which is further exacerbated at increased Au concentrations. The work presented demonstrates that an increased understanding of the primary steps in sol-immobilization allows improved optimization of materials for catalytic application

    Higgs mass and vacuum stability in the Standard Model at NNLO

    Get PDF
    We present the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential. We computed the two-loop QCD and Yukawa corrections to the relation between the Higgs quartic coupling (lambda) and the Higgs mass (Mh), reducing the theoretical uncertainty in the determination of the critical value of Mh for vacuum stability to 1 GeV. While lambda at the Planck scale is remarkably close to zero, absolute stability of the Higgs potential is excluded at 98% C.L. for Mh < 126 GeV. Possible consequences of the near vanishing of lambda at the Planck scale, including speculations about the role of the Higgs field during inflation, are discussed.Comment: 35 pages, 8 figures. Final published version, misprints fixed, figures update

    The electronic structure, surface properties, and in situ N2O decomposition of mechanochemically synthesised LaMnO3

    Get PDF
    The use of mechanochemistry to prepare catalytic materials is of significant interest; it offers an environmentally beneficial, solvent-free, route and produces highly complex structures of mixed amorphous and crystalline phases. This study reports on the effect of milling atmosphere, either air or argon, on mechanochemically prepared LaMnO3 and the catalytic performance towards N2O decomposition (deN2O). In this work, high energy resolution fluorescence detection (HERFD), X-ray absorption near edge structure (XANES), X-ray emission, and X-ray photoelectron spectroscopy (XPS) have been used to probe the electronic structural properties of the mechanochemically prepared materials. Moreover, in situ studies using near ambient pressure (NAP)-XPS, to follow the materials during catalysis, and high pressure energy dispersive EXAFS studies, to mimic the preparation conditions, have also been performed. The studies show that there are clear differences between the air and argon milled samples, with the most pronounced changes observed using NAP-XPS. The XPS results find increased levels of active adsorbed oxygen species, linked to the presence of surface oxide vacancies, for the sample prepared in argon. Furthermore, the argon milled LaMnO3 shows improved catalytic activity towards deN2O at lower temperatures compared to the air milled and sol-gel synthesised LaMnO3. Assessing this improved catalytic behaviour during deN2O of argon milled LaMnO3 by in situ NAP-XPS suggests increased interaction of N2O at room temperature within the O 1s region. This study further demonstrates the complexity of mechanochemically prepared materials and through careful choice of characterisation methods how their properties can be understood

    Yukawa Unification and the Superpartner Mass Scale

    Full text link
    Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent LHC constraints, but natural electroweak symmetry breaking still remains the most powerful motivation for superpartner masses within experimental reach. If naturalness is the wrong criterion then what determines the mass scale of the superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2) dark matter, and (3) precision b-tau Yukawa unification. We show that for an LSP that is a bino-Higgsino admixture, these three requirements lead to an upper-bound on the stop and sbottom masses in the several TeV regime because the threshold correction to the bottom mass at the superpartner scale is required to have a particular size. For tan beta about 50, which is needed for t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the opposite sign of the gluino mass, as is favored by renormalization group scaling. For lower values of tan beta, the top and bottom squarks must be even lighter. Yukawa unification plus dark matter implies that superpartners are likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of any considerations of naturalness. We present a model-independent, bottom-up analysis of the SUSY parameter space that is simultaneously consistent with Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark matter phenomenology that accompanies this Yukawa unification. A large portion of the parameter space predicts that the branching fraction for B_s to mu^+ mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure

    Spread Supersymmetry

    Full text link
    In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan and environmental constraints on the dark matter density may exclude a large range of \tilde{m} from the reheating temperature after inflation down to values that yield a LSP mass of order a TeV. After selection effects, the distribution for \tilde{m} may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP lighter than the corresponding value for single-component LSP dark matter. If SUSY breaking is mediated to the SM sector at order X^* X, only squarks, sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed by a further loop factor. This Spread SUSY spectrum has two versions; the Higgsino masses are generated in one from supergravity giving a wino LSP and in the other radiatively giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is as in minimal SUSY theories. If SUSY breaking is mediated at order X, a much less hierarchical spectrum results---similar to that of the MSSM, but with the superpartner masses 1--2 orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure

    Heavy Squarks at the LHC

    Full text link
    The LHC, with its seven-fold increase in energy over the Tevatron, is capable of probing regions of SUSY parameter space exhibiting qualitatively new collider phenomenology. Here we investigate one such region in which first generation squarks are very heavy compared to the other superpartners. We find that the production of these squarks, which is dominantly associative, only becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However, discovery of this scenario is complicated because heavy squarks decay primarily into a jet and boosted gluino, yielding a dijet-like topology with missing energy (MET) pointing along the direction of the second hardest jet. The result is that many signal events are removed by standard jet/MET anti-alignment cuts designed to guard against jet mismeasurement errors. We suggest replacing these anti-alignment cuts with a measurement of jet substructure that can significantly extend the reach of this channel while still removing much of the background. We study a selection of benchmark points in detail, demonstrating that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC with L~10(100)fb-1

    Supersymmetry with Light Stops

    Full text link
    Recent LHC data, together with the electroweak naturalness argument, suggest that the top squarks may be significantly lighter than the other sfermions. We present supersymmetric models in which such a split spectrum is obtained through "geometries": being "close to" electroweak symmetry breaking implies being "away from" supersymmetry breaking, and vice versa. In particular, we present models in 5D warped spacetime, in which supersymmetry breaking and Higgs fields are located on the ultraviolet and infrared branes, respectively, and the top multiplets are localized to the infrared brane. The hierarchy of the Yukawa matrices can be obtained while keeping near flavor degeneracy between the first two generation sfermions, avoiding stringent constraints from flavor and CP violation. Through the AdS/CFT correspondence, the models can be interpreted as purely 4D theories in which the top and Higgs multiplets are composites of some strongly interacting sector exhibiting nontrivial dynamics at a low energy. Because of the compositeness of the Higgs and top multiplets, Landau pole constraints for the Higgs and top couplings apply only up to the dynamical scale, allowing for a relatively heavy Higgs boson, including m_h = 125 GeV as suggested by the recent LHC data. We analyze electroweak symmetry breaking for a well-motivated subset of these models, and find that fine-tuning in electroweak symmetry breaking is indeed ameliorated. We also discuss a flat space realization of the scenario in which supersymmetry is broken by boundary conditions, with the top multiplets localized to a brane while other matter multiplets delocalized in the bulk.Comment: 27 pages, 7 figure

    High incidence of silent venous thromboembolism before treatment in ovarian cancer

    Get PDF
    Venous thromboembolism (VTE) such as deep-vein thrombosis (DVT) and pulmonary thromboembolism (PTE) often occurs after surgery and rarely occurs even before surgery in patients with ovarian cancer. It is well known that levels of plasma D-dimer (DD) before treatment in most ovarian cancer patients are increased. This study therefore examined whether increased levels of DD are associated with presence of VTE before treatment of ovarian cancer. Between November 2004 and March 2007, DD levels prior to initial treatment were measured in 72 consecutive patients with presumed epithelial ovarian cancer (final diagnosis: epithelial ovarian cancer, n=60; and epithelial ovarian borderline malignancy, n=12). Venous ultrasound imaging (VUI) of the lower extremity was conducted for all patients except for two patients in whom DVT was detected by pelvic computed tomography (CT). When DVT was found, pulmonary scintigraphy was subsequently performed to ascertain presence of PTE. D-dimer levels were above the cut-off value (0.5 μg ml−1) in 65 of 72 patients (90.2%). Venous ultrasound imaging or CT revealed DVT in 18 of 72 patients (25.0%) and pulmonary scintigraphy found PTE in 8 patients (11.1%). All patients with VTE were asymptomatic when VTE was found. D-dimer levels were associated with incidence of VTE (0–1.4 μg ml−1; 0 of 26 (0%), 1.5–7.4 μg ml−1; 9 of 30 (30%) and ⩾7.5 μg ml−1; 9 of 16 (56.3%), P for trend=0.0003). However, even if 1.5 μg ml−1 was used as a cut-off value, this had low specificity and positive predictive value (47.2, 38.3%), though it had high sensitivity and negative predictive value (100, 100%). Therefore, ovarian cancer patients with DD level ⩾1.5 μg ml−1 should be examined using VUI to detect silent DVT. Patients with VTE underwent preventive managements including anticoagulant therapy before initial treatment, chemotherapy or surgery, and after surgery. There was no clinical onset of postoperative VTE in all 72 patients. Measurement of DD levels and subsequent ultrasonography revealed that silent or subclinical VTE frequently occurs before surgery in ovarian cancer. The usefulness of preoperative assessment of VTE needs further confirmation in randomised controlled trials

    DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases

    Get PDF
    Trinucleotide repeats sequences (TRS) represent a common type of genomic DNA motif whose expansion is associated with a large number of human diseases. The driving molecular mechanisms of the TRS ongoing dynamic expansion across generations and within tissues and its influence on genomic DNA functions are not well understood. Here we report results for a novel and notable collective breathing behavior of genomic DNA of tandem TRS, leading to propensity for large local DNA transient openings at physiological temperature. Our Langevin molecular dynamics (LMD) and Markov Chain Monte Carlo (MCMC) simulations demonstrate that the patterns of openings of various TRSs depend specifically on their length. The collective propensity for DNA strand separation of repeated sequences serves as a precursor for outsized intermediate bubble states independently of the G/C-content. We report that repeats have the potential to interfere with the binding of transcription factors to their consensus sequence by altered DNA breathing dynamics in proximity of the binding sites. These observations might influence ongoing attempts to use LMD and MCMC simulations for TRS–related modeling of genomic DNA functionality in elucidating the common denominators of the dynamic TRS expansion mutation with potential therapeutic applications

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD
    corecore