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1 Introduction

The value of the Higgs mass (M},) favored by present ATLAS and CMS data [1, 2], M), ~
125-126 GeV, is intriguing: it is quite close to the minimum M}, value that ensures absolute
vacuum stability within the Standard Model (SM) which, in turn, implies a vanishing Higgs
quartic coupling (A) around the Planck scale. In order to assess if the measured Higgs mass
is compatible with such a peculiar condition, a precise computation is needed.

The study of the stability of the SM vacuum has a long history [3-5] (see also [6-8] and
references therein). The state-of-the-art analyses before the latest LHC data were done at
the next-to-leading order (NLO) level [9-17]. This is based on two-loop renormalization-
group (RG) equations, one-loop threshold corrections at the electroweak scale (possibly
improved with two-loop terms in the case of pure QCD corrections), and one-loop improved
effective potential (see [18] for a numerically updated analysis).

With this paper all the ingredients necessary for a complete next-to-next-to-leading
order (NNLO) analysis in the strong, top Yukawa and Higgs quartic couplings become
available. In particular, complete three-loop beta functions for all the SM gauge couplings
have been presented in [19], while the leading three-loop terms in the RG evolution of A,
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Figure 1. Left: SM RG evolution of the gauge couplings g = \/5/739’7 go = g, g3 = gs, of the
top and bottom Yukawa couplings (y:, yp), and of the Higgs quartic coupling A. All couplings are
defined in the MS scheme. The thickness indicates the 10 uncertainty. Right: RG evolution of A
varying M; and ay by +30.

the top Yukawa coupling (y;) and the Higgs anomalous dimension have been computed
in [20]. However, as pointed out in [18], the most important missing NNLO piece for the
vacuum stability analysis are the two-loop threshold corrections to A at the weak scale due
to QCD and top Yukawa interactions, because such couplings are sizable at low energy.
The calculation of such terms is presented in this work.

The relation that connects A to the Higgs mass and to the the Fermi coupling (G,,)

can be written as

2
A) =

where AX(u) denotes the sizable threshold corrections arising beyond the tree level. Given

+ ANp) (1.1)

the rapid variation of A around the weak scale (see figure 1), these corrections play a
significant role in determining the evolution of A up to high energies. Computing AX(u) at
the one loop level, using two-loop beta functions for all the SM couplings, and varying the
low-energy matching scale between M; /2 and 2M;, leads to a 2 GeV error on M}, [18]. The
NNLO finite terms that we compute here allow us to reduce this error down to £0.7 GeV.
While this work was in progress an independent calculation of the two-loop Yukawa-QCD
contributions to AX(u) has appeared [21]. Our result agrees with the one in ref. [21] for
these contributions. However, our analysis includes also the two-loop terms coming from
the Yukawa sector and can be considered the first complete NNLO evaluation of AA(pu).
We stress that both these two-loop terms are needed to match the sizable two-loop scale
dependence of \ around the weak scale, caused by the —32yfg? + 30y terms in its beta
function. As a result of this improved determination of AX(u), we are able to obtain a
significant reduction of the theoretical error on M} compared to previous works.



Putting all the NNLO ingredients together, we estimate an overall theory error on Mj,
of £1.0 GeV (see section 3). Our final results for the condition of absolute stability up to
the Planck scale is

Mt [GGV] —173.1 Oés(Mz) —0.1184
M, 129.4 + 1.4 0.
h [GeV] > 1294+ ( 0.7 > 0-5 ( 0.0007

) +1.00 . (1.2)

Combining in quadrature the theoretical uncertainty with the experimental errors on M;
and ag we get

My, >129.4+ 1.8 GeV. (1.3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is
excluded at 20 (98% C.L. one sided) for M}, < 126 GeV.

Although the central values of Higgs and top masses do not favor a scenario with a
vanishing Higgs self coupling at the Planck scale (Mp;) — a possibility originally proposed
in ref. [22, 23] and discussed more recently in ref. [12, 13, 15, 24, 25] — the smallness of
A around Mp) is quite remarkable (see figure 1). Motivated by this observation, we have
explored in more detail the robustness of the predictions for M} and M; assuming special
boundary conditions on A and its beta function around Mpj, as advocated in [24]. We have
also critically examined scenarios where the Higgs field plays a role during inflation. This
could happen because of a non-minimal coupling to gravity that flattens the SM potential
close to Mpy [15], provided A(Mpy) is positive. Alternatively, the Higgs field could have
caused inflation while it was trapped in a second unstable minimum of the potential that
appears near Mp if A\(Mp)) is positive and very close to zero [13], provided some non-SM
mechanism is introduced to exit inflation [26, 27]. Beside some technical problems, these
frameworks could become viable only if M}, satisfies the stability condition in eq. (1.2). We
therefore conclude that both these possibilities are not favored by present data, unless M,
is below about 172 GeV or new-physics threshold corrections at the high scale modify the
shape of the SM potential.

The paper is organized as follows: in section 2 we present the calculation of the thresh-
old correction AX(p). The numerical results for the condition of vacuum stability and, more
generally, for the structure of the SM Higgs potential up to very high field values are dis-
cussed in section 3. The implications of these results for Planck scale physics are discussed
in section 4. The results are summarized in the conclusions. We include also an appendix
in which a ready-to-use expression for the two-loop effective potential is presented.

2 The two-loop threshold correction to A(u)

In this section we present our main new result, namely the calculation of the two-loop
contribution to AX(u). We first obtain the y and y}g? terms from the calculation of the
Higgs mass via the effective potential. Then, we present the full result for the two-loop
QCD and Yukawa contribution to AX(u) in the SM with the electroweak gauge couplings
switched off (the so-called gauge-less limit).



2.1 Two-loop corrected Higgs mass from the effective potential

We write the SM potential for the Higgs doublet H in the usual way:

G+
V=-m?H?+\H* H= ((v+h+z‘G0)/ﬂ> , (2.1)

so that, up to negligible width effects, the pole Higgs mass M} is the solution of the
pole equation
M? = —m? + 3 02 + p, (M7), (2.2)

where m?, A and v are MS renormalized quantities and Il (p?) is the Higgs self-energy
(two-point) function, with external four-momentum p. We rewrite this equation as

ME = [-m® + 3\? + I, (0)] + [Tan(M7) — Iy (0)]
= [M;]y, + ATl (M) . (2.3)

This step is convenient because the last term (which is computationally challenging) only
gives corrections suppressed by the small Higgs coupling, in view of the smallness of M ,% =
2\v? at tree level. The first dominant term can be expressed in term of derivatives of the
effective potential, Vog. Writing the effective potential as a sum of the tree-level part Vj
plus radiative corrections AV

A

m2
Vig = —ThQ + Zh4 + AV, (24)

one finds 2V
M2 _ eff ,
[ h] \% (ah)Q o

where v is the h vev at the minimum of the effective potential, determined by the mini-

(2.5)

mization condition
Vet

Oh

As usual, it is convenient to consider m

= [—m% + M2+ mq .
h=v

Oh

as a free parameter fixed in terms of v by the

(2.6)
h=v
2

above equation, arriving at

10AV  9*AV
M2 = [2x? — - 4 2.
Ml [ U hon +(8h)2]h:v 27
Defining the operator D2, as!
10 &
D2 = |-+ 2.
" [ hah+<ah>2h:v’ 25

and noting that 2\v? = D2,Vj, we can simply write [M,ﬂv = D2 Vg, obtaining the
following form for the Higgs mass:

M} = D} Ve + Al (M7) (2.9)

Notice that the term in D2, linear in field-derivatives automatically takes into account the cancellation
of h-tadpoles (or alternatively, the minimization condition to get the right v).



It gives the Higgs mass squared as the sum of two terms. The first is the Higgs mass
obtained from the potential; this is not the complete pole Higgs mass and must be cor-
rected for nonzero external momentum effects, which are taken care of by the last term,
Allpp (M, ﬁ) It is a straightforward exercise to verify that this expression for pole mass is
independent of the renormalization scale p. In particular, one can easily prove that

d
dlnp

(M7, = —2v[M7],, (2.10)

dlnluAHhh(M}?) = 2y [M} — Al (M7)] (2.11)

where v is the Higgs anomalous dimension, describing its wave-function renormalization,
v=dlnh/dln pu.

Using eq. (2.9) and the one-loop result for Vg in eq. (A.2) of the appendix one obtains
the one-loop Higgs mass correction. The explicit one-loop result for the pole mass is

M}? = 2\0* + 5 M7, (2.12)
with

1
S ME = W{syf(zxmf — M?)Bo(my, mg, M) + 6)20% (3¢, — 6 + 7V/3)
2
— (39" = 8Ag + 16\%) Bo(rmuy, muw, My,)
2
—%(3G4 — 8AG2 + 16A2) Bo(myz, mz, My)

—

+2miy (7 — 2A(bw — 1)] +m% [G* — 2A({z — 1)] } (2.13)

where G? = g2 + ¢’2. All parameters on the right-hand side (including v) are MS running
parameters (with the exception of M,%, which appears through the external momentum
dependence of the Higgs self-energy). As eq. (A.2) was obtained in the Landau gauge, v
in eq. (2.13) represents the gauge and scale-dependent vacuum expectation value of the
Higgs field as computed in the Landau gauge. Similarly the Ally;,(M2) contribution in
that equation is computed in the Landau gauge. In eq. (2.13)

2 _je

m2 + ami — x(1 — x)m? — s (2.14)

112

1
1—
Bo(ma, mp,me) = —/ In ( 7)
0

and ¢, = In(m2/u?), with m, the running mass for particle = (m; = y,v/v/2). One can
explicitly check, using the RGEs for these parameters, that this expression for M, ,f is indeed
scale-independent at one-loop order.

Neglecting gauge couplings and setting M, ,% = 2)\v? in the one-loop terms, one obtains
the approximate expression

2y2v?

2
M= e

(M2 +36) — 3yity] (2.15)



Figure 2. Two-loop vacuum diagrams that give the dominant contribution (depending only on g
and y;) to the SM two-loop effective potential.

To compute eq. (2.9) at the two-loop level one can use the two-loop effective poten-
tial [28, 29] to calculate [M iﬂv and the general results for two-loop scalar self-energies
in [30] (supplemented by the results on two-loop momentum integrals of [31]) to calculate
AHhh(M,%). If we only keep the leading two-loop corrections to Mg proportional to 3¢,
yfgg, dropping all subleading terms that depend on the electroweak gauge couplings or A,
our task is simplified dramatically. First, in the two-loop effective potential we only have
to consider the diagrams depicted in figure 2. Their contribution can be extracted from
the expressions for Vy and Vpy in the appendix. Second, in the two-loop term AHS}B (M 2)
we can substitute the tree-level value M, }% = 2\v?, so that

AT (MR) 2 TI) (220%) = 11})(0) - (2.16)

It is then clear that the two-loop contributions coming from that term are proportional to
A and are therefore subdominant. In this section we neglect AHfh)(M 2) completely.

To find the expression for the Higgs mass at two-loop precision, we must also take
into account that M }% has to be evaluated with one-loop precision in the argument of the
one-loop term Aﬂgh) (M?). Putting together all these pieces, keeping only the yf and y}g?
terms, we arrive at the following two-loop correction to eq. (2.12):

2.2
Yy v

2
2Mi = gy

2
169292 (302 + £;) — 3y <9e$ — 30 +2+ 7;)] . (2.17)
The expression for M} as a function of A can be inverted to obtain A(u) as a function
of the pole Higgs mass Mj. To express A(u) in terms of physical quantities (i.e. G, and
the pole masses Mz, My, and M;) the relations between physical and MS parameters are
needed. At the level of accuracy we are working only the relation between the y;(u) and
M; and the one between v(u) and G, are required. They are given by:

8 1 1
2 2 2 2
= 2V2G, M} |1+ - —592(3Ly — 4) + ——V2G, M (—9Ly + 11 2.1
Yyt (p) = 2V2G,M; [ +3(47T)2gs(3 T )+(47r)2fG“ 2(=9Ly + )}, (2.18)
1 1 1
2 2 2 2
= ——+ ——|3M7(2Ly — 1) + M (5 — 6L ~Mz(5—6L
v () \/iGu+ (dn)? [3 i (2L — 1) + My, (5 — 6 W)+2 7z(5—6Lz)
3MZME, 1 o, 3ME M}
——Z W (Ly—Lw)— =Mj — —5Y—(Ly — Ly)| , (2.19)
4(M% — M) 25 MR — M

where Lx = In(M2/p?), with masses in capital letters denoting pole masses.



We find:

G, M?
Ap) = MT; + AW () + AP (), (2.20)
with
2 2
A () = /\EQ)CD,lcad.(lu’) + /\ghzk,lcad.(lu’) +. (2.21)

where the ellipsis stands for the subleading terms neglected in this section. The known one
loop term is

1 1 {G(LH — Ly )M}

1 2
Al )(N) = iGu (47r)2 M}% _ MI%V

— 8 (2Myy + My) — 2(—3 4 6 L) M7 M}
4 2 2 2
+ M (19 —15Ly + 6Ly — 3\/§7r) +12(M? — 4MZ)M2 Bo(My, My, My,)

+2 (Mj, — 4AMj My + 12Myy) Bo(Myy, My, My,)

+ (M — AM M + 12M3) Bo(Mz, Mz, M) (2.22)
6M2ZM?2
+ M} {2(8LW — )M, + (8Lz — T)M% — ﬁ@z — LW)} } ,
z — Mw
and the leading two loop QCD and Yukawa terms are
G2 M}
2 ¢
NgoD ead. (4) = oy 6402 00) (4 = 6Ly +3L3) (2.23)
8v2G3 MP
2 t
)‘gfgk,lead,(ﬂ) = W (30 + 7 4+ 36Ly — 45L7) . (2.24)

The above expression for A(u) has the correct dependence on the renormalization scale p,
so that both sides of (2.20) evolve with p in the same way to the order we work.

2.2 Two-loop contribution to AA(x) in the gauge-less SM

In this section we go beyond the leading y9 and y}g? contributions to AX(u) discussed
in the previous section and derive the QCD and Yukawa corrections in the SM with the
electroweak gauge couplings switched off. We first discuss the two-loop renormalization
of the Higgs sector of the SM and then derive the 2-loop relation between A(u) and the
physical parameters G, M, and Mj,. In our derivation we follow closely ref. [32].

We start from the unrenormalized Higgs potential, eq. (2.1) written in terms of bare
quantities, and set m? — m2 —dm?2, A — A\, — 6\, v — v, —dv. Then, assuming dm?, 5\, sv
of O(a), we obtain

V=V-4V, (2.25)

where, putting m? = \,v2,
1
Vi =M [GFGT(GTG + 12+ Go) 4 1 (W4 G7)°

1
+ Ao b [B2+ GE+2GTGT] + 5M,% h?, (2.26)



with M}, = 2 \.v2, while, up to two-loop terms,

1

5V = A [G*G (GTG™ + 12+ Go)  + = (W2 + G%)Q}

2 2\2 2
+ [/\T (5“ L 0 ) + v, 0 <1— 5”2)] h[h?+ G +2G7G]

W~ |

20, 8 v3 20?2

vor (faz v ara )+ tonn? +vor (1 - o h (2.27)
T B 0 9 h r OT 21}721 . .
In eq. (2.27)
2 2 2 gv? 2
v’f’
2 2 v? 2

0T = \ov™ +v0A [ 1 — ) om”, (2.29)

and §v? is related to 6v through /v2 — 602 = v, — dv.
Following ref. [32] we require the cancellation of the tadpole contribution by setting

2
5t <1 - ;51;2) . (2.30)

Vr

where ¢7T" is the sum of the tadpole diagrams with the external leg extracted. We identify
M ,% in V,. with the on-shell Higgs mass leading to the condition

SM? = Relly, (M2), (2.31)

where the I, (M ,%) in the above equation includes only the contribution of the self-energy
diagrams because eq. (2.30) is enforced. A third condition can be obtained by looking
directly at the muon-decay process. At the two-loop level we can write

2
Gy 1 Aww AWW> B AWWVW} 7 (2.32)

£ = 1 - 2 Vi + M BW+< —
V2 2v3{ Mgy, v Mg, Mg,

where v is the unrenormalized vacuum, Ay w = Aww (0) is the W self-energy evaluated
at zero external momenta, Viy and By are the relevant vertex and box contributions
in the p-decay process and My, is the unrenormalized W mass. Performing the shifts
V3 — v2 — 6v?, My, — M3 — 0MZ,, where 6 M3, = ReAww (ME,), and working at the
two-loop level we arrive at

5 1 1 {AWW Aww M3,
vy = - g Bt
V2G, V2G| My My,
(Aww )\ n Aww Vi
Mgy, Mg,

+ 5MV2VBW} +6v%,  (2.33)

where E = Viy + M3, By. We identify the renormalized vacuum by v2 = 1/(v/2G,,), then
§v? is defined to cancel the contribution of the curly bracket in eq. (2.33).



Our choice of renormalization conditions implies that the renormalized quartic Higgs
coupling is set equal to
G
A= —EME, 2.34

while eqgs. (2.28)—(2.33) can be used to obtain the correction d\. Writing
oA = oA 4512 (2.35)

where the superscript indicates the loop order, we have

Al 1 ()
o = =Gy { Gl 0 - o menarp + 7 240
G AR 1 7(2)
@ — _Zea ) fww  pe) ReTl® (M2 +
V2o Mg M2 nn (M) o
+ (MVQV ~E ST v Re Ty (M) + 5=
2
A(l) (5(1)M2 A(l) A(l) V(l)
+ WWM‘%V W AZVV%V/V +%3VW+5(1)M3VB%) . (2.37)

The connection between A,, as defined in eq. (2.34), and A(u) can be easily
derived using

Ar — 6A = A(p) — 6X, (2.38)
or
M) = \Cj%M}% — oA+ OA . (2.39)

In eqs. (2.38)-(2.39) 6 is the counterterm associated to A(p), i.e. the counterterm that
subtracts only the terms proportional to powers of 1/e¢ and v — In(47) in dimensional
regularization, with d = 4—2 e being the dimension of space-time. Concerning the structure
of the 1/€ poles in d\ and 8\, one notices that it should be identical once the poles in 6\
are expressed in terms of MS quantities. Then, after this operation is performed, a finite
A(p) is obtained.

Specializing the above discussion to the two-loop case we have

G
M) = 7‘5%% — AW gy — AP gy + A (2.40)

from which we identify the one- and two-loop contributions entering eq. (2.20),
A () = =AW gy, (2.41)

which reproduces the one-loop result of ref. [32] and

AP () = =6 g, + A (2.42)



In egs. (2.40)—(2.42) the subscript ‘fin’ denotes the finite part of the quantity involved and
A is the two-loop finite contribution that is obtained when the OS parameters entering the
1/e pole in oA are expressed in terms of MS quantities, the finite contribution coming
from the O(e€) part of the shifts.

Differentiating eq. (2.40) with respect to u, the known two-loop beta function for
the Higgs quartic coupling is recovered. It should be recalled that the right-hand side of
eq. (2.40) is expressed in terms of physical quantities, then the dependence on p in that
equation is explicit. To obtain the correct two-loop beta function, one has first to differ-
entiate with respect to p and then to express the one-loop part in terms of MS quantities.

The computation of A(?) (1) in the full SM is quite cumbersome, see eq. (2.37). However,
the calculation can be greatly simplified if one considers the gauge-less limit of the SM in
which the electroweak interactions are neglected, i.e. the gauge couplings g and ¢’ are set
equal to zero. In this limit, eq. (2.37) simplifies to

G AP ) 7
@W”Akf*y?ﬁ{ﬁg MQRH%WU W (2.43)

37
RelIf) (M7) + 5

+ 2 v

1 1
A%A/)W Aév)w RS
Mg, \ My M

) } - Ag.l. )
gl

where the subscript g.l. means that we have considered in the various self-energies only
diagrams involving the top and bottom quarks, the Higgs and the Goldstone bosons, the
latter with vanishing mass, and the limit g, ¢’ — 0 is taken.

Using eq. (2.43) we compute the QCD and the Yukawa contribution to A®)(u). The
top Yukawa-QCD contribution, Ag&D(u), is obtained evaluating the relevant diagrams via
a Taylor series in xp; = M, }3 /Mt2 up to fourth order

@) G )
Agen (1) = (4 ji N.Cp g2(p) |16 (—4 — 6Ly + 3L%) (2.44)
2 2 61 5 1223 43123
35 — “—— + 12Ly — 1212 4
e ( g Tk T> i g5 + hig300 T OM 1323000

where N, and Cp are color factors (N, = 3, Cr = 4/3). Equation (2.44) shows that the
series converges very fast. Our result is in agreement with ref. [21], the numerical difference
between eq. (2.44) and the expression of ref. [21] for M}, ~ 125 GeV being negligible.

The Yukawa contribution, )\gu)k(,u), is (neglecting the small bottom Yukawa)

)\(2) \foS MG

Yuk(:u’) = (47‘(‘) {N2 [IGBo(Mt,Mt,Mh>(—1 —|-2LT)

+ Tpt ((1 + 4Bo(Mt,Mt, Mh) — 2LT)(1 — QLT))]
8
+N. [16 + §w2 + 32Bo(My, My, My)(1 + 2L7) — 48Lp + 40L%
929 16
— Tpt <6 + E w4+ 48 Bo(Mp, My, My) —16Lg (1 — L)

76 190
+Bo(My, My, M) ( 3 T 32LT) + - Lr+ 58LT>

~10 -



) (17629

8 2
Thy W -+ §7'r2 ——Lyg+ Bo(Mh,Mh, Mh) (27 — 18LT) +40Lp

3

13
+10Lr Ly + 12L3% + Bo(My, My, M) (3 + 4LT>>

1181 7« 61 59
3
o L 2 Bo(My, My, M) + — L
x’“<900 3 50 B0(Ma, Ma, My) + 56 L
2 68
— = Bo(My, My, M) — —L
35 o(My, My, My) 53 T)]
131 729 1
+a3, [37r2 <9 _ 18 37r> Sy —111Ly + 36L%
6 2 4
—225./3 75 + 72
+ w<4f + 18\/§LH> + 243} } , (2.45)

where Bo(Mj,, My, My) =2 — Ly — n/v/3 and Sy = 4/(9+/3) Cla(7/3) = 0.260434138.. ..
In eq. (2.45) the terms proportional to N2 and N? were computed exactly while the ones
proportional to N, were computed via an asymptotic expansion in the large top mass up to
:L‘%t terms exploiting the asymptotic-expansion techniques developed in ref. [33]. The part
independent of N, in eq. (2.45) was computed using the results for the two-loop on-shell
master integrals of ref. [34].

We end this section by commenting on the size of the terms suppressed by powers of
Tpy with respect to the yfg? and y¥ contribution in eqgs. (2.44), (2.45). While in the QCD
case, eq. (2.44), the xp; suppressed terms are indeed smaller than the y}g? contribution,
the same is not true in the Yukawa case, eq. (2.45), where the xp; terms are actually larger
than the y9 contribution.

3 Extrapolating the SM up to the Planck scale

A full NNLO computation of the Higgs potential requires three main ingredients: 1) the
two-loop effective potential; 2) three-loop beta functions for all the relevant couplings;
3) two-loop matching conditions to determine the initial values of the couplings at the
electroweak scale. As anticipated in the introduction, all these ingredient are now available
for the QCD, Yukawa and Higgs quartic couplings. In this section we first discuss the
structure of the two-loop potential and the numerical inputs at the electroweak scale, and
then present the final numerical results for the stability condition in the Mp—M; plane.

3.1 The two-loop effective potential

The SM effective potential is known up to two-loops [28, 29]. Its explicit form in a ready-
to-use expression is given in the appendix. For large field values (h > v), the potential is
very well approximated by its RG-improved tree-level expression,

vy = 2p, (3.1)

with 4 = O(h). For this reason, if we are interested only in the condition of absolute
stability of the potential, we could simply study the RG evolution of A imposing the
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condition A(A) > 0 for any value A up to the Planck scale (as for instance done in [11]).
Given that A reaches its minimum value before Mp;, independently of its initial condition
at the electroweak scale, the minimum Higgs mass ensuring vacuum stability corresponds
to the initial value of X\ such that at some scale Ag

_d
dlnp

A(Ao) = Br(Ao) =0, B Alp) - (3:2)
This is indeed the condition analyzed in ref. [21]. In principle, a more accurate determi-
nation of the minimal M} ensuring vacuum stability is obtained taking into account the
full structure of the Higgs potential at the two-loop level. In practice, the determination
of M}, obtained by the condition (3.2) differs by about 0.1 GeV from the one determined
by the absolute stability of the RG-improved two-loop potential.

In the following we are interested also in analyzing the shape of the Higgs potential
close to the Planck scale and in the scale where the instability occurs (as a function of M}
and M,;). To this purpose, the study of the RG evolution of A is not sufficient and the
complete structure of the effective potential at the two-loop level plays a significant role.
As pointed out in [9, 10], one can always define an effective coupling Aeg(h) such that for
h > v the two-loop effective potential assumes the form

)\eff(h)

Vi (h) = =2

nt . (3.3)
The explicit two-loop result for Ag(h) can be easily obtained from the two-loop potential
and is given in the appendix. We report here the simplified expression obtained when, in
the two-loop term, we take into account only the contributions from the strong and the
top Yukawa couplings? [9, 10]:

A () = AT { Mb) + 4;2 S Ny (ry — G) (3.4)

1 3 2
+ Wyf [ng(?)rtz —8r:+9) — iy? <3rt2 — 167 + 23 + 3>] } )
Here all couplings are evaluated at the scale determined by the field value (u = h), the
index p runs over particle species, N, counts degrees of freedom (with a minus sign for
fermions), the field-dependent mass squared of species p is m%(h) = ug + th2 and C) is a
constant. The values of {N,,, Cy, ,ug, Kkp} within the SM are:

P t W Z h X

N, | —-12 6 3 1 3

C, | 3/2 5/6 5/6 3/2  3/2 (3.5)
gy | 0 0 0 —m?  —m?

kp | U2/2 g2/4 (P+4H/4 3x X

2 At high scales, the electroweak gauge couplings g’ and g become comparable in size to y; and gs (see
figure 1), but their contribution to Aegt(h) turns out to be numerically small so that eq. (3.4) is a very good
approximation.
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Figure 3. Evolution of the Higgs coupling A(x) and its beta function, eq. (3.2), as a function of
the renormalization scale, compared to the evolution of the effective coupling Aeg(h), defined in
eq. (3.3), as a function of the field value. Left: curves plotted for the best-fit value of M;. Right:
curves plotted for the lower value of M, that corresponds to A(Mp) = 0.

h
I8
where v = dlnh/dInp is the Higgs field anomalous dimension, takes into account the
2F(h)]'

The factor

I'(h) () dlnp, (3.6)

wave-function renormalization. We have also defined r, = In[x,e

The difference Aegr(h) —A(h) is positive, as illustrated in figure 3. As aresult [9, 10], at a
given field value the potential is more stable than what guessed from the naive expectation
based on the RG-improved tree-level potential in eq. (3.1), with 4 = h. We finally notice
that the difference Aeg(h) — A(h) gets suppressed at large field values, especially when A
reaches its minimum close to the Planck scale. This is expected according to the following
two observations: 1) the difference between Aeg and A can be reabsorbed by a shift in the
scales at which the two couplings are evaluated, up to finite two-loop corrections; 2) this
shift has a small impact at large field values given the corresponding vanishing of ) (see
figure 3).

3.2 Inputs at the electroweak scale and threshold corrections

As far as the SM gauge couplings are concerned, we can directly use results in the literature
for the couplings in the MS scheme. In particular, from a global fit of electroweak precision
data, performed with the additional input Mj, ~ 125 GeV, the following MS values of the
electromagnetic coupling and the weak angle renormalized at My are obtained [35]:

gt =127.937+0.015,  sin? Gy = 0.23126 + 0.00005 . (3.7)

From these we derive
oy H(Mz) = ag) sin? Oy = 29.587 4+ 0.008, (3.8)
ay'(Mz) = ag,t cos® Oy = 98.35 £ 0.013 . (3.9
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For the strong coupling we adopt
as(Mz) = 0.1184 £+ 0.0007 [36] (3.10)

such that, including 3 loop RG running up to M; and matching to the theory with 6 flavors,
we get

as(Myz) — 0.1184 M,
(M) = 1.1645 + 0.0031 —0.00046 ~173.15) . (3.11
9s(Me) + ( 0.0007 > (GeV (3:-11)

We determine the MS top-quark Yukawa coupling (y;) starting from the top-quark pole
mass (M;) determined from experiments. Averaging measurements from Tevatron and
LHC experiments,

173.2 £ 0.9 GeV Tevatron [37]
M;={ 1726 £0.6£1.2 GeV  CMS pj [38] (3.12)
174.5+£0.6 £2.3 GeV  ATLAS ¢ [39],

we get
M; = (173.1 £0.7) GeV. (3.13)

In order to translate this value into a determination of y; we apply: 1) QCD threshold
corrections up to O(a?) [40-42]; 2) complete one-loop electroweak corrections from ref. [43];
3) two-loop O(awy) corrections from ref. [44], including the O(aas) terms due to the
renormalization of the Fermi coupling (see section 2). As a result, we find, for the MS top
Yukawa coupling renormalized at the top pole mass M;:

M, M,
M) = 0. . —173.15) —o0. — 12
(M) 093587~|—000557< Goy 173 5) 000003( o 5)
as(Mz) — 0.1184
—0.00041 +0.002004, - 14
0.000 ( STIE > 0.00200¢, (3.14)

The O(aay) term, that is the parametrically smallest correction, is equivalent to a tiny shift
in M; below 0.1 GeV. This effect is well below the O(Aqcp) irreducible non-perturbative
uncertainty on the top-quark mass determined at hadron colliders (see e.g. ref. [45, 46]),
that is responsible for the theoretical error in eq. (3.14). More explicitly, we estimate an
irreducible theoretical error of £Aqecp ~ £0.3GeV in M; from non-perturbative effects,

and an additional uncertainty of 4-0.15 GeV from missing O(a?) threshold corrections.?

3In principle, a direct determination of the MS top-quark mass at hadron colliders can be obtained from
the experimental data on the o(pp/pp — tt) cross section (see ref. [47] and references therein). At present
this determination leads to a value for M; which is perfectly consistent with eq. (3.13) but has an error
four times larger [48]. For completeness and for future reference, we report here the stability condition in
eq. (1.2) as a function of the MS top-quark Yukawa coupling, rather than the top-quark pole mass:

M, > 1294 + 2.0(yt(Mt) - 0.9356) B 0.35<as(Mz) —0.1184

+ 1.0
0.0054 0.0007 ) On
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Figure 4. The instability scale A; at which the SM potential becomes negative as a function of the
Higgs mass (left) and of the top mass (right). The theoretical error is not shown and corresponds
to a £1 GeV uncertainty in Mj,.

Next, applying the threshold corrections discussed in section 2, we determine the fol-
lowing value for the Higgs self coupling in the MS scheme renormalized at the pole top mass:

B M, M,
A(M,) = 0.12577+0.00205 ( oV 125> 0.00004 ( Gov 173.15) +0.00140y, . (3.15)

The residual theoretical uncertainty, that is equivalent to an error of £0.7 GeV in M, has
been estimated varying the low-energy matching scale for A\ between Mz and 2M;.

For completeness, we also include in the one- and two-loop RG equation the contribu-
tions of the small bottom and tau Yukawa couplings, as computed from the MS b-quark
mass, my(my) = 4.2GeV, and from M, = 1.777 GeV.

3.3 Phase diagram of the SM

The final result for the condition of absolute stability is presented in eq. (1.2). The central
value of the stability bound at NNLO on Mj, is shifted with respect to NLO computations
(where the matching scale is fixed at 4 = M;) by about +0.5 GeV, whose main contributions
can be decomposed as follows:

+ 0.6 GeV due to the QCD threshold corrections to A (in agreement with [21]);
+ 0.2 GeV due to the Yukawa threshold corrections to A;

—0.2GeV from RG equation at 3 loops (from [19, 20));

— 0.1 GeV from the effective potential at 2 loops.

As a result of these corrections, the instability scale is lowered by a factor ~ 2, for My ~
125 GeV, after including NNLO effects. The value of the instability scale is shown in
figure 4.

The phase diagram of the SM Higgs potential is shown in figure 5 in the M;—Mj}, plane,
taking into account the values for M), favored by ATLAS and CMS data [1, 2]. The left
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Figure 5. Regions of absolute stability, meta-stability and instability of the SM vacuum in the
M—M]}, plane. Right: zoom in the region of the preferred experimental range of Mj, and M; (the
gray areas denote the allowed region at 1, 2, and 30). The three boundaries lines correspond to
as(Mz) = 0.1184 +0.0007, and the grading of the colors indicates the size of the theoretical error.
The dotted contour-lines show the instability scale A in GeV assuming a(Myz) = 0.1184.

Type of error Estimate of the error Impact on My
My Experimental uncertainty in M; +1.4GeV
Qs Experimental uncertainty in ag +0.5 GeV
Experiment Total combined in quadrature +1.5GeV
A Scale variation in A +0.7GeV
Yt O(Aqcp) correction to M; +0.6 GeV
Yt QCD threshold at 4 loops +0.3 GeV
RGE EW at 3 loops + QCD at 4 loops +0.2 GeV
Theory Total combined in quadrature +1.0GeV

Table 1. Dominant sources of experimental and theoretical errors in the computation of the SM
stability bound on the Higgs mass, eq. (1.2).

plot illustrates the remarkable coincidence for which the SM appears to live right at the
border between the stability and instability regions. As can be inferred from the right plot,
which zooms into the relevant region, there is significant preference for meta-stability of
the SM potential. By taking into account all uncertainties, we find that the stability region
is disfavored by present data by 20. For M} < 126 GeV, stability up to the Planck mass is
excluded at 98% C.L. (one sided).

The dominant uncertainties in the evaluation of the minimum M}, value ensuring abso-
lute vacuum stability within the SM are summarized in table 1. The dominant uncertainty
is experimental and comes mostly from the measurement of M;. Although experiments at
the LHC are expected to improve the determination of M, the error on the top mass will
remain as the largest source of uncertainty. If no new physics other than the Higgs boson
is discovered at the LHC, the peculiarity of having found that the SM parameters lie at
the critical border between stability and metastability regions provides a valid motivation
for improved top quark mass measurements, possibly at a linear collider.

The dominant theoretical uncertainty, while reduced by about a factor of 3 with the
present work, is still related to threshold corrections to the Higgs coupling A at the weak
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Figure 6. Left: the Higgs quartic coupling A at the Planck scale as a function of M}, with
+30 variations in M; and as. Right: curves in the M;—M; plane corresponding to the conditions
A(Mpy) = 0 (red), Br(Mp)) = 0 (blue), and to the Veltman’s condition of vanishing supertrace
(green, see text). In all cases the dashed and dotted lines denote the +3¢ variation in ag. The gray
areas denote the experimentally allowed region at 1, 2, and 30.

scale. Another sizable theoretical uncertainty comes from the fact that the pole top mass
determined at hadron colliders suffers from O(Aqcp) non-perturbative uncertainties [45].
A possibility to overcome this problem and, at the same time, to improve the experimental
error on M;, would be a direct determination of the MS top-quark running mass from
experiments, for instance from the #f cross-section at a future eTe™ collider operating
above the tt threshold. In this respect, such a collider could become crucial for establishing
the structure of the vacuum and the ultimate fate of our universe.

As far as the RG equations are concerned, the error of +0.2GeV is a conservative
estimate, based on the parametric size of the missing terms. The smallness of this er-
ror, compared to the uncertainty due to threshold corrections, can be understood by the
smallness of all the couplings at high scales: four-loop terms in the RG equations do not
compete with finite tree-loop corrections close to the electroweak scale, where the strong
and the top-quark Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100-
200 MeV, which is far better than the theoretical error with which we are able to determine
the condition of absolute stability.

4 Implications

4.1 Boundary conditions at the Planck scale

It is certainly a remarkable coincidence that both A and its beta function 8y nearly vanish
around the Planck scale. This motivates us to explore in more detail the boundary condi-
tions at Mp) required to reproduce the measured values of the SM parameters. In figure 6
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(left) we show the prediction for the Higgs quartic coupling A at Mp), with 30 bands de-
scribing the errors in M; and «as. For M}, in the range preferred by LHC, \(Mp;) = 0 can
be obtained only if M; is &~ 2GeV below its present central value (i.e. M; < 171 GeV).
However, it should be noted that A = 0 is neither a fixed point nor a point of enhanced
symmetry and thus satisfying exactly this condition is not especially meaningful. The
best-fit value for A at the Planck scale is small and negative,

M,
A(Mpy) = —0.0144 + 0.0028 < G ’{/ - 125> +0.00477, & 0.00184, + 0.0028;,,  (4.1)
(§]

where the uncertainties refer to the present 1o errors in M; and «ag, and to the theoreti-
cal error.

Equation (4.1) could be the result of matching the SM at Mp| with a theory in which A
vanishes at tree level and receives one-loop threshold corrections. However, the contribution
to high-energy thresholds from the SM couplings at Mp is typically a few times 1073, The
required effect of size 1072 can be obtained from loops of SM couplings only if these involve
particles with large multiplicities, or else from loop with new (large) coupling constants.
As evident from figure 1, the boundary condition of A at high energy is fairly independent
of the precise value at which we impose it.

The right plot in figure 6 shows the dependence on M} and M; of the boundary
conditions A(Mp;) = 0 (red line) and B\(Mp;) = 0 (blue line). While A\ = 0 weakly
depends on the scale at which is evaluated, a more pronounced dependence affects the
condition 8y = 0 (see figure 3). This is because ) depends not only on A, but also on
other couplings (top Yukawa and gauge) that run in the high-energy region. As a result,
although () (Mp;) = 0 cannot be exactly satisfied, the beta function vanishes at scales very
near the Planck mass. For instance, for M; = 171.0 GeV and M} = 125 GeV, both A\ and
By simultaneously vanish when they are evaluated at a scale equal to 3 x 107 GeV. In
ref. [24] it was argued that A\(Mp)) = 0 and [x(Mp;) =~ 0 could be justified in the case of
an asymptotically safe gravitational theory.

Just for illustration, in the right plot in figure 6 we also show the Higgs mass implied
by Veltman’s condition [49] that the supertrace of the squared masses of all SM particles
vanishes at a given scale, here chosen to be Mp;: STrM?2(Mp;) = 0. We remark, however,
that this condition does not carry special information about the power divergences of the
theory, which are dominated by UV effects, while the supertrace includes only the contribu-
tion from the IR degrees of freedom in the SM. At any rate, the possibility of a very special
fine-tuning involving only the SM loop contributions and leading to STrM?(Mp;) = 0, im-
plies a Higgs mass M}, ~ (135+2.5) GeV, which is excluded at more than 30. Lowering the
scale at which the supertrace condition is evaluated makes the disagreement even stronger.

4.2 Higgs inflation from non-minimal coupling to gravity

The extrapolation of the SM up to very high energy has led to some speculations about
the possibility of interpreting the Higgs boson as the inflaton. One scenario for Higgs
inflation [50] exploits a large non-minimal coupling between the Higgs bilinear and the
Ricci scalar R, with an interaction Lagrangian ¢|H|?R. The effect of this interaction is
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to flatten the Higgs potential (or any other potential) above the scale Mp;/+/€, providing
a platform for slow-roll inflation. A correct normalization of the spectrum of primordial
fluctuations fixes the value of the coupling constant £. Using the tree-level potential, one
finds € ~ 5 x 104V,

This inflationary scenario, attractive for its minimality, suffers from a serious drawback.
Perturbative unitarity is violated at the scale Mp; /¢, signaling the presence of new physical
phenomena associated with strong dynamics. It is naturally expected that these phenomena
will affect the scalar potential above Mp;/€ in an uncontrollable way [51, 52]. One solution
is to add new degrees of freedom that restore perturbative unitarity [53, 54|, although
the minimality of the model is then lost. The procedure advocated by the proponents of
this scenario is to assume that the strong dynamics will preserve intact the shape of the
SM potential, even above Mp)/€. Although we find this assumption questionable, it is still
interesting to address the issue of whether the Higgs data are compatible with this scenario.

A two-loop analysis of Higgs ¢-inflation was developed in ref. [15, 55]. The ordinary
SM evolution is perfectly adequate below the scale Mpi/£, while the new interaction can
affect the scalar potential at very high energy. The renormalization procedure above the
inflationary scale is not unambiguous as, for instance, the renormalization scale differs in
the Jordan and Einstein frames. Luckily, the slow running of A at high energy makes these
issues irrelevant, from a practical point of view. A simple SM calculation of the potential
is perfectly adequate to describe the situation of Higgs &-inflation (see also the discussion
in ref. [21]).

In practice, the result is that Higgs &-inflation requires stability of the potential up to
the inflationary scale Mp;//€. As we are interested in the minimum value of the Higgs
mass that satisfies this condition, the coupling A at the relevant scale is very small and thus
the coupling ¢ is not particularly large, ¢ < O(10%). Therefore, the resulting restriction is
stability, as given by eq. (1.2). If the LHC indication for M}, = 125-126 GeV is confirmed,
the simplest version of Higgs inflation is disfavored, unless the top mass is about 20 below
its present central value. However, given the proximity of A\(Mpi) to the critical value for
stability, unknown one-loop threshold corrections near the Planck mass could be sufficient
to rescue the proposal. It is also interesting that the introduction of a single scalar field at
the scale Mp)/€ could simultaneously restore perturbative unitarity and cure the potential
instability [56].

4.3 Higgs inflation from false vacuum

Alternative proposals for Higgs inflation employ the peculiarity of the SM scalar poten-
tial to develop a second minimum at large Higgs field values for a very special choice of
parameters [12, 22, 23]. The possibility of using this new minimum for inflation was first
contemplated in ref. [13], finding that it implies a viable prediction for the Higgs mass, but
also a wrong prediction for the amplitude of density fluctuations. The latter result can be
cured in non-minimal inflationary setups [26, 27| without affecting the prediction for the
Higgs mass, which we now precisely compute.
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The first derivative of the Higgs potential V = Aeg(h)h?/4 is

av Beﬂ" 3
—=(A h° . 4.2
= (ar+ 20) (1.2

Here Aegr(h) is the effective coupling defined in eq. (3.4) and fSeg = dAeg/dInh. If Aegr
becomes sufficiently small, the potential can develop a minimum at h = hpyin, such that

ﬁe{f

Aeff + 1

~0. (4.3)
h:hmin

This situation can occur in the proximity of a field value h, where [eg vanishes. In the
neighborhood of h,, we can approximate A.g(h) as

Aeit(h) &~ A\, + bln? hﬁ : (4.4)
where A, is the minimum value of Aeg, such that Beg(As) = 0. The zero of the 8 function
insures that the leading log is absent in eq. (4.4) and thus b is a typical two-loop coefficient.
For the relevant values of the SM parameters, we find b = 0.4/(47r)*. We are interested
in a situation in which the field configuration corresponds to a local minimum (while the
EW vacuum remains the global minimum) and thus we want both A, and b to be positive.
Using the expansion in eq. (4.4), we can compute hpi, and the minimum of the potential

Vmin = V(hmin)7
1 16\,
Pin & hy exp [4 ( 1-— T 1)] , (4.5)

b h.
Vinin =~ — bt In

) min

(4.6)

hmin
The minimum hyi, exists only for extremely small values of the Higgs quartic coupling,
Av < b/16. As we vary A, within its allowed range (0 < A\, < b/16) we find that Ap;, is
always near h, (6*1/4 < Amin/h« < 1), while Vi, can change widely (0 < Vipin < bhf‘nin/32).

If the Higgs field is trapped in the false vacuum during the early universe, it can cause
inflation. The normalization of the spectrum of primordial perturbations, which is deter-
mined by Vinin, can be appropriately selected by tuning the ratio A./b. The main difficulty
of this scenario is to achieve a graceful exit from the inflationary phase. Two mechanisms
have been proposed. The first one [26] employs a new scalar field, non-minimally coupled
to gravity, that slows down the expansion rate, thus allowing for quantum tunneling of
the Higgs out of the false vacuum. The second mechanism [27] uses a scalar field weakly
coupled to the Higgs which, during the cosmological evolution, removes the barrier in the
Higgs potential in a process analogous to hybrid inflation. So, in practice, the minimality
of the SM is lost and one may wonder if there is any conceptual gain with respect to adding
a new scalar playing the role of the inflaton. Nevertheless, it is interesting to investigate
whether the Higgs and top masses are compatible with the intriguing possibility of a false
vacuum at large field value.

In practice the above equations amount to saying that the conditions for the existence
of a second (unstable) vacuum are that A\.g (essentially) vanishes at the same scale at
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Figure 7. Two-loop SM Higgs potential for M} = 124,125,126 GeV around the critical top mass
that gives a second minimum around the Planck scale. The various curves correspond to variations
in M; by 0.1 MeV.

which B¢ vanishes. This corresponds to the intersection between the red band (condition
A =~ g = 0) and the blue band (condition 8y = 0) in figure 6(right). It is remarkable
that the SM can achieve these conditions, although they require a top mass about 2o
below the central value. The resulting relation between M; and M; corresponds to the
equality in eq. (1.2), and is precisely studied in figure 7 where we compute for M) =
{124,125,126} GeV the predicted top mass and show the shape of the potential around
the false vacuum. The value of Vi, can be changed by tuning A, or, in other words, by
accurate variations of M} and M;. The existence of the false vacuum depends critically
on the exact values of the SM parameters and requires dialing M} and M; by one part
in 10%. However, the exact value of the needed top mass has a theoretical uncertainty,
reduced down to +0.5 GeV thanks to our higher-order computation. Note from figure 7
that the field value where the false vacuum is positioned is larger than what was reported
in [13, 26]. The corrections in eq. (3.4) [9, 10, 12] are mostly responsible for the larger field
values found in our analysis.

4.4 Supersymmetry

Our higher order computation of the relation between the Higgs mass and the Higgs quartic
coupling A has implications for any model that can predict A. If supersymmetry is present
at some scale m, then in the minimal model one finds the tree-level relation

A7) = % (g2 () + ()] cos? 25 . (4.7)

A dedicated analysis of the resulting prediction for the Higgs mass as function of m and
of tan 5 was performed in [57] (see also [58]). We here update the results, including the
new correction which increases the predicted Higgs mass by an amount that changes with
Myp,. Once more, the main impact of our calculation is the reduction of the theoretical
uncertainty from £3 GeV down to +1GeV. As a consequence, supersymmetry broken at
the Planck scale, which requires A > 0 and thus the stability condition eq. (1.2), is dis-
favored at 20, unless thresholds at Mp; (or non-minimal couplings) account for the small
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Predicted range for the Higgs mass
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Figure 8. NNLO prediction for the Higgs mass M}, in High-Scale Supersymmetry (blue, lower) and
Split Supersymmetry (red, upper) for tan 8 = {1,2,4,50}. The thickness of the lower boundary at
tan 5 = 1 and of the upper boundary at tan 8 = 50 shows the uncertainty due to the present lo
error on «y (black band) and on the top mass (larger colored band).

negative value of \(Mp)), see eq. (4.1). Thresholds at one loop have been computed in [57]
including finite parts and the constant factor due to the fact that the MS renormalization
scheme breaks supersymmetry. A simplified, but illustrative, formula for the supersym-
metric threshold corrections is obtained by taking a common mass My for weak gauginos
and higgsinos, and a common mass m; for the stops,

1 mg ma
SA(Mp)) ~ e —0.25+0.12In ﬁ; +0.051n TR (4.8)

where m 4 is the mass of the Higgs pseudoscalar. The absence of a scale dependence in
eq. (4.8) is a consequence of the approximate cancellation of ) around Mp;. Negative
values of the boundary condition for A thus require stops lighter than higgsinos, winos, and
bino. By using the full formula and allowing for each sparticle mass to vary by one order
of magnitude above or below the average mass m we find

—0.006 < A\(Mpy) < 0.002 . (4.9)

This is insufficient to reach the central value of eq. (4.1) and thus indicates that supersym-
metry has to be broken at a scale below Mp, if the Higgs mass has to match a supersym-
metric boundary condition.

Our predictions for the Higgs mass as a function of the supersymmetry breaking scale
m are illustrated in figure 8, in the case of High-Scale Supersymmetry (all supersymmetric
particles with masses equal to ) and Split Supersymmetry [59-61] (supersymmetric scalars
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with masses equal to m and supersymmetric fermions at the weak scale). We refer the
reader to ref. [57] for details about the underlying assumptions of the calculation.

Figure 8 shows not only how M}, =~ 125 GeV disfavors supersymmetry broken at a very
high scale, but also the well know fact that the usual scenario of weak-scale supersymmetry
can account for the Higgs mass only for extreme values of the parameters (such as large
tan 3, heavy stops, maximal stop mixing). In the case of Split Supersymmetry, large values
of m are clearly excluded by LHC Higgs searches. On the other hand, (mildly “unnatural”)
scenarios in which the masses of supersymmetric scalars are one-loop larger than the weak
scale [62-64] are in good agreement with data.

5 Conclusions

One of the most important questions addressed by the LHC is naturalness. Not only will
the answer affect our understanding of the mechanism for EW breaking, but it will also
determine our strategy for future directions in theoretical physics. On one side we have
the avenue of larger symmetries unifying physical laws in a single fundamental principle;
on the other side we have new kinds of paradigms, where parameters are not understood
by naturalness arguments in the context of well-defined effective theories. At present, the
multiverse is one of the most intriguing options to pursue the latter path.

If the LHC finds Higgs couplings deviating from the SM prediction and new degrees of
freedom at the TeV scale, then the most important question will be to see if a consistent
and natural (in the technical sense) explanation of EW breaking emerges from experimental
data. But if the LHC discovers that the Higgs boson is not accompanied by any new physics,
then it will be much harder for theorists to unveil the underlying organizing principles of
nature. The multiverse, although being a stimulating physical concept, is discouragingly
difficult to test from an empirical point of view. The measurement of the Higgs mass may
provide a precious handle to gather some indirect information.

Once we extrapolate the SM to very short distances, we find that the values of the
Higgs mass, hinted by the first LHC results (125-126 GeV), lie right at the edge between
EW stability and instability regions, see figure 5. Moreover, the slow running of the quartic
Higgs coupling A in the high-energy regime implies that the instability scale most critically
depends on the Higgs mass Mj. A small change in M}, (and M;) can drastically modify
our conclusions regarding vacuum stability. This special situation motivated us to perform
a NNLO calculation of the Higgs potential in the SM, which is the subject of this paper.

Our calculation includes three-loop running for gauge, top Yukawa, and Higgs quartic
coupling and two-loop matching conditions keeping the leading effects in ag, y+ and A. In
particular, we have computed for the first time the two-loop threshold correction to A,
which was the most sizable missing ingredient of the NNLO result. The completion of the
NNLO calculation allows us to reduce the theoretical error in the stability limit on the Higgs
mass from 3 GeV to 1 GeV. Our final result is shown in eq. (1.2). After our calculation, the
largest source of uncertainty comes from the parametric dependence on the top quark mass,
which leads to a 1o error of 1.4 GeV in the critical Higgs mass. Of course our calculation
reliably accounts for IR effects, but ignores possible new (unknown) UV threshold effects
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occurring near the Planck scale. Since our goal is to learn information about physics at
very short distances, the high-energy corrections constitute an opportunity, rather than a
deficiency in the calculation.

The first lesson that we learn from the SM extrapolation is that the Higgs mass hinted
by LHC results corresponds to A = 0 and () ~ 0 at high energies. This, by itself, is an
intriguing result because A = 0 is the critical value for stability and it may hide some
information about Planckian physics. With our precise calculation, we can investigate
further the situation. We find that, for M, = 125GeV, A\(Mp;) = —0.014 £+ 0.006, see
eq. (4.1). The exact vanishing of A(Mpy) is excluded at 20. Moreover, the smallness of (3
at high energy implies that A remains negative in a relatively large energy range. Indeed,
we find that, for M), = 125GeV, the instability scale develops at 10''*! GeV. Quantum
tunneling is sufficiently slow to ensure at least metastability of the EW vacuum, see figure 5.
The small value of A(Mp)) may indicate a radiative origin, although typical one-loop effects
of SM couplings appears to be insufficient to account for it. We have also shown that ()
varies more rapidly at high energy and vanishes at a scale of about 3 x 1017 GeV.

The stability of the SM potential is a crucial issue for models of inflation that employ
the Higgs boson. We have analyzed several proposals showing that present data disfavor
them at 98% C.L. These models can still be viable if the top quark mass turns out to be
less than about 171 GeV or if new physics around Mp slightly modifies the shape of the
Higgs potential. The latter possibility, although fairly plausible, limits the predictability
and the minimality of the approach. We have also updated previous predictions for the
Higgs mass in High-Scale Supersymmetry and Split Supersymmetry.

It is natural to try to speculate on the possible meaning of the near vanishing of A and
B around the Planck scale. The coupling A = 0 is the critical value that separates the
ordinary EW phase from a phase in which the Higgs field slides to very large values. It is
noteworthy that the hierarchy problem can also be interpreted as a sign of near criticality
between two phases [65]. The coefficient m? of the Higgs bilinear in the scalar potential is
the order parameter that describes the transition between the symmetric phase (m? > 0)
and the broken phase (m? < 0). In principle, m? could take any value between — M3, and
+M1¢2>17 but quantum corrections push m? away from zero towards one of the two end points
of the allowed range. The hierarchy problem is the observation that in our universe the
value of m? is approximately zero or, in other words, sits near the boundary between the
symmetric and broken phases. Therefore, if the LHC result is confirmed, we must conclude
that both m? and ), the two parameters of the Higgs potential, happen to be near critical
lines that separate the EW phase from a different (and inhospitable) phase of the SM. We
do not know if this peculiar quasi-criticality of the Higgs parameters is just a capricious
numerical coincidence or the herald of some hidden truth.

The occurrence of criticality could be the consequence of symmetry. For instance,

2 would remain

supersymmetry implies m? = 0. If supersymmetry is marginally broken, m
near zero, solving the hierarchy problem. But if no new physics is discovered at the LHC,
we should turn away from symmetry and look elsewhere for an explanation of the near-
criticality of m?2.

The critical value A = 0 could be justified by symmetry reasons. For instance, if the
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Higgs is a Goldstone boson, its potential vanishes and both m? and X are zero. The non-
vanishing top Yukawa coupling prevents this possibility to be realized exactly. Radiative
corrections then completely spoil the solution to the hierarchy problem, but could generate
a small and negative value of A at the Planck scale, compatible with our results. Super-
symmetry broken at high scales could also account for a vanishing boundary condition of
A, if tan 8 = 1. However, we have shown that, unless the Higgs has strong couplings with
new states that live at Planckian energy, the supersymmetric boundary condition cannot
be satisfied at Mp;, see figure 8.

Alternatively, criticality could be the consequence of dynamics. If transplanckian dy-
namics induce a large anomalous dimension for the Higgs field, the matching condition
at Mp; of the quartic coupling A could be very small, while the top Yukawa coupling re-
mains sizable. It was argued in ref. [24] that gravity itself could be responsible for a large
anomalous dimension of the Higgs in the transplanckian region.

It is known that statistical systems often approach critical behaviors as a consequence
of some internal dynamics or are attracted to the critical point by the phenomenon of self-
organized criticality [66]. As long as no new physics is discovered, the lack of evidence for
a symmetry explanation of the hierarchy problem will stimulate the search for alternative
solutions. The observation that both parameters in the Higgs potential are quasi-critical
may be viewed as evidence for an underlying statistical system that approaches criticality.
The multiverse is the most natural candidate to play the role of the underlying statistical
system for SM parameters. If this vision is correct, it will lead to a new interpretation
of our status in the multiverse: our universe is not a special element of the multiverse
where the parameters have the peculiarity of allowing for life, but rather our universe is
one of the most common products of the multiverse because it lies near an attractor critical
point. In other words, the parameter distribution in the multiverse, instead of being flat
or described by simple power laws (as usually assumed) could be highly peaked around
critical lines because of some internal dynamics. Rather than being selected by anthropic
reasons, our universe is simply a very generic specimen in the multitude of the multiverse.

The indication for a Higgs mass in the range 125-126 GeV is the most important result
from the LHC so far. If no new physics at the TeV scale is discovered, it will remain as one
of the few and precious handles for us to understand the governing principles of nature.
The apparent near criticality of the Higgs parameters may then contain information about
physics at the deepest level.
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A SM effective potential up to two-loops

The SM effective potential is known up to two-loops [28, 29]. We present here its explicit
expression in the MS scheme and the Landau gauge. The tree-level part is (in this section
we denote the Higgs field by ¢ to avoid confusion with the symbol h defined later)

Vo(6) = —pm’ + A6t (A1)

The one-loop Coleman-Weinberg potential [67] is

K

1 [—12m}(L; — 3/2) + 6miy (Lw — 5/6) + 3m% (L. — 5/6)

Vi(¢)

+miy (L, — 3/2) 4+ 3my(Ly — 3/2)] (A.2)

where xk = 1/(167%), m? = y?¢*/2 is the top mass squared, mi = —m? + 3\¢* the Higgs
mass squared, mi(qﬁ) = —m?2+\¢? is the Goldstone mass squared and L; = In(m?/Q?), etc.

We split the two-loop potential in different pieces according to their diagrammatic
origin. We use the short-hand notation t = m?, w = m2,, 2 = m2, h = m}%, X = mi and

we neglect the bottom Yukawa coupling. The important top Yukawa contribution is

3
Vy = 53/?/62 [2J1 — 4Jrg — 2J4, + (4 — h) Lyp, + 2(t — X) Lgo — X112 - (A.3)

There is a purely scalar piece
3
Vg = ZMA (5149 + 2Jng + Jnn — 40> (Ingg + Innn)] (A.4)

a purely gauge part

62

Vv = Enz(z — W) [Jzw + W(Lwo — Twoo)]
2 1

% kw [2(11Az—25Aw)—|—(24wa—|—25sz)+24Izww—|—101zwo—9]w00+49w}
w

5 [58 1
4+ K w E(AﬁzAw)+E(7wa+15sz)+58[ww—9Im0+1200+1w00+76w
2
+§m2 [Juw — (16w + 2) Ly + 2(8w + 2) Lwo — 21200 + 40?] | (A.5)

a fermion-gauge boson part* (which includes the important QCD piece)

16
Vey = 8¢2k*mj (3L7 —8L;+9) +§e%2 (tA,+Jp —tIyo+tIi)

“Notice that the first paper in ref. [28, 29] contains a typo for this piece, with an extra factor 3 for the
lepton-lepton-Z contributions.
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2
+g6n2{9t2 —16tw—36w* —26t Ay +6(4w—3t) Ay +8(t+4w) A, — 4y +8.J;.

9

+8 [(t—2w)]ttz —6wIw00—10wIZ00]+E [(t—Qw)th—i—(t—w)(t+2w)Itw0—tQItoo] }
G? , 17 1

+?/ﬁ} —tAt—(17t+40w—20z)AZ—|—?Jtt—17Jtz—5(7t—40w+17z)Im

103
+ (100w—2z) Izoo+9t2+20tw—48w2—4tz+60wz—3022} : (A.6)

and a scalargauge boson part

(h—w)?

—1
dw wh0

1 1 3 1
Vsy = 92,42 { [2(h+3x+z)3w] Aw+§w(Ah+Ag)+Z(Jgg+Jhg)+

1 [1 w
+ - [2(h—2w)wa+(3w+X—h)th+(h+5w+Z—X)Jwg} - (Z_X> Twgg
o (WAt 120?) Ly | 2 () b Lug—w (o
3w wwh 4w whg 2
1| wez 302 5 o\2.4 2
2 2T k2 (8\20 .0 —h2T
+2{QHG}+16U1R (8N ¢ Ing0 100)

62

—m(z—w)li2 {(w+z—x)sz—szg+ [(w+z—x)2+8wz] Lwg

- (w_X)QIwQO - (Z_X)ZIZQO+X2I900}

o2l (arw-2m ) A wn Twgt (4= 22 ) Tyt 22422 (24 x)
——K W——z—— wAw — - = z(z
9 X 3 ow z W wg aw 77 2X X

w 1 13 3
— —(w+2x)—-x? (6+7r2)+(4x—z)lzgg—XIggo+2(3w—X)Iwgo} .

2 4 4
(A.7)
The functions A, J and I are
A, =Alz) = 2(L, — 1), (A.8)
Joy = Jz,y] = Alz]Aly], (A.9)
Loye = 1{0,9,2) = ¢ [0~y = DLy Lot (o 4y = 2)LaLe + (<2 —y + 2)LaLy]
+2(xLy +yLy + 2L,) — g(x +y+z)— %g[x, v, 2], (A.10)

where L, = In(z/Q?) and

S = o (= ) () (O ()

_ o o o 2
~2 Li (W) —2Li2( xﬂ/;z R) +7;} , (A1)
z z
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where R? = 22 + ¢% + 22 — 22y — 222 — 2yz and Liy(w) is the dilogarithm function. The
above expression is valid for R? > 0, while for R? < 0 the analytical continuation should be
used instead. Some particular cases of the previous functions which are useful to evaluate
the potential are

Yy s 1 o
I[x,y,O] = (x —y) |Lig (*> - = (L:v - Ly)Lﬂc—y + L

T 6 2

5
_§(x +y)+2xLy +2yL, — xL, L, ,
I[z,2,0] = z (~L2 + 4L, —5) ,
1 5 2

I =z|—=L242L,—=——) . A.12
[x,0,0] x( 5 -+ 5 6) ( )

The 2-loop subleading corrections to Aeg not included in eq. (3.4), obtained from the
full 2-loop correction (but setting A — 0, as this coupling is particularly small at high field
values) are explicitly given by

6
2
St = K {48 (=307, — 1874 /T (t— )2/ (tw) + 532w + 1447, — 598 + 1277)

g4G2 r 2

+ 56 397 - 32r7), +126r7 ), + 6617 + 27r%, — 232r, — 138r,, + 1603]
9"y

50 (—27r3j + 277y T (t—w)2 ) (tw) — 1007 — 1281 + 367, + 333 + 977)
g2G4 r 2

~Sog | 21972 = 40rg,, + 21— T30r- + 6y + 715+ 200

GS 2
s (34rt/z 273r2 4312 +9407“2—961—2063>

w/z

+§G2yf (3r7 —8r;+9) —

G4?/t2 2 2\ . § 22, 2 .

+ 18 27 i, =T 68r; — 287, + 189| + 3g Gy; (2ry +4r, —9)

U3 (3,200, .—16 234" §(6—3“46L'[/t}
9 t t/wl (t—w)/t T+25+ 3 +4 g g yi + yt) I2|w

2 4
+Z—’é [(14G2 — 160g° + 128(9;2) y? + 17G* — 406°G? + 32g4] E11at
92 4 2 2
+ E |:3G +4 <12G 519 — 36G2> g :| gllzw} ; (A13)

where gllzy = 5(17 17 iL’/?J)v
rp = In[r,e?’ ™) Tejw = MKt/ Kw] s 7wy = I[(ke — Kw) /K], (A.14)
and so on.
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