733 research outputs found

    Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Get PDF
    Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Results: Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion: As it was shown that the crop contributed QTLs with either a positive or a negative effect on plant vigour, we hypothesize that genomic regions exist where transgenes could preferentially be located in order to mitigate their persistence in natural populations through genetic hitchhiking

    Entity linking of tweets based on dominant entity candidates

    Get PDF
    © 2018, Springer-Verlag GmbH Austria, part of Springer Nature. Entity linking, also known as semantic annotation, of textual content has received increasing attention. Recent works in this area have focused on entity linking on text with special characteristics such as search queries and tweets. The semantic annotation of tweets is specially proven to be challenging given the informal nature of the writing and the short length of the text. In this paper, we propose a method to perform entity linking on tweets built based on one primary hypothesis. We hypothesize that while there are formally many possible entity candidates for an ambiguous mention in a tweet, as listed on the disambiguation page of the corresponding entity on Wikipedia, there are only few entity candidates that are likely to be employed in the context of Twitter. Based on this hypothesis, we propose a method to identify such dominant entity candidates for each ambiguous mention and use them in the annotation process. Particularly, our proposed work integrates two phases (i) dominant entity candidate detection, which applies community detection methods for finding the dominant candidates of ambiguous mentions; and (ii) named entity disambiguation that links a tweet to entities in Wikipedia by only considering the identified dominant entity candidates. Our investigations show that: (1) there are only very few entity candidates for each ambiguous mention in a tweet that need to be considered when performing disambiguation. This helps us limit the candidate search space and hence noticeably reduce the entity linking time; (2) limiting the search space to only a subset of disambiguation options will not only improve entity linking execution time but will also lead to improved accuracy of the entity linking process when the main entity candidates of each mention are mined from a temporally aligned corpus. We show that our proposed method offers competitive results with the state-of-the-art methods in terms of precision and recall on widely used gold standard datasets while significantly reducing the time for processing each tweet

    Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus

    Get PDF
    Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. © 2010 Bhardwaj et al

    The Light Stop Scenario from Gauge Mediation

    Full text link
    In this paper we embed the light stop scenario, a MSSM framework which explains the baryon asymmetry of the universe through a strong first order electroweak phase transition, in a top-down approach. The required low energy spectrum consists in the light SM-like Higgs, the right-handed stop, the gauginos and the Higgsinos while the remaining scalars are heavy. This spectrum is naturally driven by renormalization group evolution starting from a heavy scalar spectrum at high energies. The latter is obtained through a supersymmetry-breaking mix of gauge mediation, which provides the scalars masses by new gauge interactions, and gravity mediation, which generates gaugino and Higgsino masses. This supersymmetry breaking also explains the \mu\ and B_\mu\ parameters necessary for electroweak breaking and predicts small tri-linear mixing terms A_t in agreement with electroweak baryogenesis requirements. The minimal embedding predicts a Higgs mass around its experimental lower bound and by a small extension higher masses m_H\lesssim 127 GeV can be accommodated.Comment: 20 pages, 3 figures; v2: changes in the conventions; v3: more details on the Higgs mass prediction, version published in JHE

    Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: differences in lesions presenting as mass and non-mass-like enhancement

    Get PDF
    Purpose: To investigate methods developed for the characterisation of the morphology and enhancement kinetic features of both mass and non-mass lesions, and to determine their diagnostic performance to differentiate between malignant and benign lesions that present as mass versus non-mass types. Methods: Quantitative analysis of morphological features and enhancement kinetic parameters of breast lesions were used to differentiate among four groups of lesions: 88 malignant (43 mass, 45 non-mass) and 28 benign (19 mass, 9 non-mass). The enhancement kinetics was measured and analysed to obtain transfer constant (Ktrans) and rate constant (kep). For each mass eight shape/margin parameters and 10 enhancement texture features were obtained. For the lesions presenting as nonmass-like enhancement, only the texture parameters were obtained. An artificial neural network (ANN) was used to build the diagnostic model. Results: For lesions presenting as mass, the four selected morphological features could reach an area under the ROC curve (AUC) of 0.87 in differentiating between malignant and benign lesions. The kinetic parameter (kep) analysed from the hot spot of the tumour reached a comparable AUC of 0.88. The combined morphological and kinetic features improved the AUC to 0.93, with a sensitivity of 0.97 and a specificity of 0.80. For lesions presenting as non-mass-like enhancement, four texture features were selected by the ANN and achieved an AUC of 0.76. The kinetic parameter kepfrom the hot spot only achieved an AUC of 0.59, with a low added diagnostic value. Conclusion: The results suggest that the quantitative diagnostic features can be used for developing automated breast CAD (computer-aided diagnosis) for mass lesions to achieve a high diagnostic performance, but more advanced algorithms are needed for diagnosis of lesions presenting as non-mass-like enhancement. © The Author(s) 2009

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding

    Get PDF
    One aspirational goal of computational chemistry is to predict potent and drug-like binders for any protein, such that only those that bind are synthesized. In this Roadmap, we describe the launch of Critical Assessment of Computational Hit-finding Experiments (CACHE), a public benchmarking project to compare and improve small-molecule hit-finding algorithms through cycles of prediction and experimental testing. Participants will predict small-molecule binders for new and biologically relevant protein targets representing different prediction scenarios. Predicted compounds will be tested rigorously in an experimental hub, and all predicted binders as well as all experimental screening data, including the chemical structures of experimentally tested compounds, will be made publicly available and not subject to any intellectual property restrictions. The ability of a range of computational approaches to find novel binders will be evaluated, compared and openly published. CACHE will launch three new benchmarking exercises every year. The outcomes will be better prediction methods, new small-molecule binders for target proteins of importance for fundamental biology or drug discovery and a major technological step towards achieving the goal of Target 2035, a global initiative to identify pharmacological probes for all human proteins. [Figure not available: see fulltext.

    Persistence Increases with Diversity and Connectance in Trophic Metacommunities

    Get PDF
    We are interested in understanding if metacommunity dynamics contribute to the persistence of complex spatial food webs subject to colonization-extinction dynamics. We study persistence as a measure of stability of communities within discrete patches, and ask how do species diversity, connectance, and topology influence it in spatially structured food webs.We answer this question first by identifying two general mechanisms linking topology of simple food web modules and persistence at the regional scale. We then assess the robustness of these mechanisms to more complex food webs with simulations based on randomly created and empirical webs found in the literature. We find that linkage proximity to primary producers and food web diversity generate a positive relationship between complexity and persistence in spatial food webs. The comparison between empirical and randomly created food webs reveal that the most important element for food web persistence under spatial colonization-extinction dynamics is the degree distribution: the number of prey species per consumer is more important than their identity.With a simple set of rules governing patch colonization and extinction, we have predicted that diversity and connectance promote persistence at the regional scale. The strength of our approach is that it reconciles the effect of complexity on stability at the local and the regional scale. Even if complex food webs are locally prone to extinction, we have shown their complexity could also promote their persistence through regional dynamics. The framework we presented here offers a novel and simple approach to understand the complexity of spatial food webs

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore