67 research outputs found

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    Anthropogenic Disturbance Can Determine the Magnitude of Opportunistic Species Responses on Marine Urban Infrastructures

    Get PDF
    Background: Coastal landscapes are being transformed as a consequence of the increasing demand for infrastructures to sustain residential, commercial and tourist activities. Thus, intertidal and shallow marine habitats are largely being replaced by a variety of artificial substrata (e.g. breakwaters, seawalls, jetties). Understanding the ecological functioning of these artificial habitats is key to planning their design and management, in order to minimise their impacts and to improve their potential to contribute to marine biodiversity and ecosystem functioning. Nonetheless, little effort has been made to assess the role of human disturbances in shaping the structure of assemblages on marine artificial infrastructures. We tested the hypothesis that some negative impacts associated with the expansion of opportunistic and invasive species on urban infrastructures can be related to the severe human disturbances that are typical of these environments, such as those from maintenance and renovation works. Methodology/Principal Findings: Maintenance caused a marked decrease in the cover of dominant space occupiers, such as mussels and oysters, and a significant enhancement of opportunistic and invasive forms, such as biofilm and macroalgae. These effects were particularly pronounced on sheltered substrata compared to exposed substrata. Experimental application of the disturbance in winter reduced the magnitude of the impacts compared to application in spring or summer. We use these results to identify possible management strategies to inform the improvement of the ecological value of artificial marine infrastructures. Conclusions/Significance: We demonstrate that some of the impacts of globally expanding marine urban infrastructures, such as those related to the spread of opportunistic, and invasive species could be mitigated through ecologically-driven planning and management of long-term maintenance of these structures. Impact mitigation is a possible outcome of policies that consider the ecological features of built infrastructures and the fundamental value of controlling biodiversity in marine urban systems

    Disease-Toxicant Interactions in Manganese Exposed Huntington Disease Mice: Early Changes in Striatal Neuron Morphology and Dopamine Metabolism

    Get PDF
    YAC128 Huntington's disease (HD) transgenic mice accumulate less manganese (Mn) in the striatum relative to wild-type (WT) littermates. We hypothesized that Mn and mutant Huntingtin (HTT) would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl2-4H2O (50 mg/kg) on days 0, 3 and 6. Striatal medium spiny neuron (MSN) morphology, as well as levels of dopamine (DA) and its metabolites (which are known to be sensitive to Mn-exposure), were analyzed at 13 weeks (7 days from initial exposure) and 16 weeks (28 days from initial exposure). No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology

    Amyloid β-peptide-dependent activation of human platelets: essential role for Ca2+ and ADP in aggregation and thrombus formation.

    No full text
    Alzheimer's disease is associated with the accumulation of Aβ (amyloid β)-peptides in the brain. Besides their cytotoxic effect on neurons, Aβ-peptides are thought to be responsible for the atherothrombotic complications associated with Alzheimer's disease, which are collectively known as cerebrovascular disease. In the present study, we investigated the effect of Aβ-peptides on human platelet signal transduction and function. We discovered that the 25-35 domain of Aβ-peptides induce an increase in platelet intracellular Ca2+ that stimulates α-granule and dense granule secretion and leads to the release of the secondary agonist ADP. Released ADP acts in an autocrine manner as a stimulant for critical signalling pathways leading to the activation of platelets. This includes the activation of the protein kinases Syk, protein kinase C, Akt and mitogen-activated protein kinases. Ca2+-dependent release of ADP is also the main component of the activation of the small GTPase Rap1b and the fibrinogen receptor integrin αIIbβ3, which leads to increased platelet aggregation and increased thrombus formation in human whole blood. Our discoveries complement existing understanding of cerebrovascular dementia and suggest that Aβ-peptides can induce vascular complications of Alzheimer's disease by stimulating platelets in an intracellular Ca2+-dependent manner. Despite a marginal ADP-independent component suggested by low levels of signalling activity in the presence of apyrase or P2Y receptor inhibitors, Ca2+-dependent release of ADP by Aβ-peptides clearly plays a critical role in platelet activation. Targeting ADP signalling may therefore represent an important strategy to manage the cerebrovascular component of Alzheimer's disease

    Autosomal dominant thrombocytopenias with reduced expression of glycoprotein Ia

    No full text
    We have recently studied a case series of 46 unrelated patients with inherited thrombocytopenias and identified 18 cases that did not fit any known platelet disorder. In two unrelated families, a mild thrombocytopenia with normal platelet size was transmitted in an autosomal dominant fashion. Bleeding time was prolonged in 5 investigated patients. In all of them, flow cytometry and SDS-PAGE of platelet glycoproteins (GP) showed a reduced content of GPIa, a subunit of the GPIa-IIa complex (also known as integrin alpha 2 beta(1)) that is a major collagen receptor on platelets. All other membrane GPs were within the normal range. GPIa deficiency was associated with severely reduced in vitro platelet adhesion to molecules known to interact selectively with GPIa. In vitro platelet aggregation was normal in all subjects, except for a suboptimal platelet response to fibrillar collagen in two patients. A mild defect of alpha-granules was observed in all affected subjects. No mutation was identified in the genes encoding for GPIa or GPIIa. Since no other similar cases have been reported in the literature, we suggest that an autosomal dominant thrombocytopenia associated with GPIa deficiency and alpha-granule defect represents a new form of inherited thrombocytopenia
    corecore