25 research outputs found

    Alexithymia, but not Autism Spectrum Disorder, may be Related to the Production of Emotional Facial Expressions

    Get PDF
    Background A prominent diagnostic criterion of autism spectrum disorder (ASD) relates to the abnormal or diminished use of facial expressions. Yet little is known about the mechanisms that contribute to this feature of ASD. Methods We showed children with and without ASD emotionally charged video clips in order to parse out individual differences in spontaneous production of facial expressions using automated facial expression analysis software. Results Using hierarchical multiple regression, we sought to determine whether alexithymia (characterized by difficulties interpreting one’s own feeling states) contributes to diminished facial expression production. Across groups, alexithymic traits—but not ASD traits, IQ, or sex—were associated with quantity of facial expression production. Conclusions These results accord with a growing body of research suggesting that many emotion processing abnormalities observed in ASD may be explained by co-occurring alexithymia. Developmental and clinical considerations are discussed, and it is argued that alexithymia is an important but too often ignored trait associated with ASD that may have implications for subtyping individuals on the autism spectrum

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Temporal Difference Error Prediction Signal Dysregulation in Cocaine Dependence

    No full text
    Cocaine dependence impacts drug-related, dopamine-dependent reward processing, yet its influence on non-drug reward processing is unclear. Here, we investigated cocaine-mediated effects on reward learning using a natural food reinforcer. Cocaine-dependent subjects (N=14) and healthy controls (N=14) learned to associate a visual cue with a juice reward. In subsequent functional imaging sessions they were exposed to trials where juice was received as learned, withheld (negative temporal difference error (NTDE)), or received unexpectedly (positive temporal difference error (PTDE)). Subjects were scanned twice in sessions that were identical, except that cocaine-dependent participants received cocaine or saline 10 min before task onset. In the insula, precentral and postcentral gyri NTDE signals were greater, and PTDE-related function was reduced in cocaine-dependent subjects. Compared with healthy controls, in the cocaine-dependent group PTDE signals were also reduced in medial frontal gyrus and reward-related function, irrespective of predictability, was reduced in the putamen. Group differences in error-related activity were predicted by the time as last self-administered cocaine use, but TDE function was not influenced by acute cocaine. Thus, cocaine dependence seems to engender increased responsiveness to unexpected negative outcomes and reduced sensitivity to positive events in dopaminergic reward regions. Although it remains to be established if these effects are a consequence of or antecedent to cocaine dependence, they likely have implications for the high-cocaine use recidivism rates by contributing to the drive to consume cocaine, perhaps via influence on dopamine-related reward computations. The fact that these effects do not acquiesce to acute cocaine administration might factor in binge-related escalated consumption
    corecore