8,339 research outputs found

    Leray and LANS-α\alpha modeling of turbulent mixing

    Get PDF
    Mathematical regularisation of the nonlinear terms in the Navier-Stokes equations provides a systematic approach to deriving subgrid closures for numerical simulations of turbulent flow. By construction, these subgrid closures imply existence and uniqueness of strong solutions to the corresponding modelled system of equations. We will consider the large eddy interpretation of two such mathematical regularisation principles, i.e., Leray and LANSα-\alpha regularisation. The Leray principle introduces a {\bfi smoothed transport velocity} as part of the regularised convective nonlinearity. The LANSα-\alpha principle extends the Leray formulation in a natural way in which a {\bfi filtered Kelvin circulation theorem}, incorporating the smoothed transport velocity, is explicitly satisfied. These regularisation principles give rise to implied subgrid closures which will be applied in large eddy simulation of turbulent mixing. Comparison with filtered direct numerical simulation data, and with predictions obtained from popular dynamic eddy-viscosity modelling, shows that these mathematical regularisation models are considerably more accurate, at a lower computational cost.Comment: 42 pages, 12 figure

    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats

    Get PDF
    This protocol describes the use of in vitro television microscopy to evaluate vascular function in isolated cerebral resistance arteries (and other vessels), and describes techniques for evaluating tissue perfusion using Laser Doppler Flowmetry (LDF) and microvessel density utilizing fluorescently labeled Griffonia simplicifolia (GS1) lectin. Current methods for studying isolated resistance arteries at transmural pressures encountered in vivo and in the absence of parenchymal cell influences provide a critical link between in vivo studies and information gained from molecular reductionist approaches that provide limited insight into integrative responses at the whole animal level. LDF and techniques to selectively identify arterioles and capillaries with fluorescently-labeled GS1 lectin provide practical solutions to enable investigators to extend the knowledge gained from studies of isolated resistance arteries. This paper describes the application of these techniques to gain fundamental knowledge of vascular physiology and pathology in the rat as a general experimental model, and in a variety of specialized genetically engineered designer rat strains that can provide important insight into the influence of specific genes on important vascular phenotypes. Utilizing these valuable experimental approaches in rat strains developed by selective breeding strategies and new technologies for producing gene knockout models in the rat, will expand the rigor of scientific premises developed in knockout mouse models and extend that knowledge to a more relevant animal model, with a well understood physiological background and suitability for physiological studies because of its larger size

    Random forests with random projections of the output space for high dimensional multi-label classification

    Full text link
    We adapt the idea of random projections applied to the output space, so as to enhance tree-based ensemble methods in the context of multi-label classification. We show how learning time complexity can be reduced without affecting computational complexity and accuracy of predictions. We also show that random output space projections may be used in order to reach different bias-variance tradeoffs, over a broad panel of benchmark problems, and that this may lead to improved accuracy while reducing significantly the computational burden of the learning stage

    Dielectron Measurements in STAR

    Full text link
    Ultrarelativistic heavy-ion collisions provide a unique environment to study the properties of strongly interacting matter. Dileptons, which are not affected by the strong interactions, are an ideal penetrating probe. We present the dielectron results for p+p and Au+Au collisions at \sqrt{s_\mathrm{NN}}} =200 GeV, as measured by the STAR experiment. We discuss the prospects of dilepton measurements with the near-future detector upgrades, and the recent lower beam energy Au+Au measurements.Comment: Resonance Workshop at UT Austin (2012), 8 pages,15 figure

    Comparison of computational codes for direct numerical simulations of turbulent Rayleigh-B\'enard convection

    Get PDF
    Computational codes for direct numerical simulations of Rayleigh-B\'enard (RB) convection are compared in terms of computational cost and quality of the solution. As a benchmark case, RB convection at Ra=108Ra=10^8 and Pr=1Pr=1 in a periodic domain, in cubic and cylindrical containers is considered. A dedicated second-order finite-difference code (AFID/RBflow) and a specialized fourth-order finite-volume code (Goldfish) are compared with a general purpose finite-volume approach (OpenFOAM) and a general purpose spectral-element code (Nek5000). Reassuringly, all codes provide predictions of the average heat transfer that converge to the same values. The computational costs, however, are found to differ considerably. The specialized codes AFID/RBflow and Goldfish are found to excel in efficiency, outperforming the general purpose flow solvers Nek5000 and OpenFOAM by an order of magnitude with an error on the Nusselt number NuNu below 5%5\%. However, we find that NuNu alone is not sufficient to assess the quality of the numerical results: in fact, instantaneous snapshots of the temperature field from a near wall region obtained for deliberately under-resolved simulations using Nek5000 clearly indicate inadequate flow resolution even when NuNu is converged. Overall, dedicated special purpose codes for RB convection are found to be more efficient than general purpose codes.Comment: 12 pages, 5 figure

    Simple Front End Electronics for Multigap Resistive Plate Chambers

    Full text link
    A simple circuit for the presentation of the signals from Multi-gap Resistive Plate Chambers (MRPCs) to standard existing digitization electronics is described. The circuit is based on "off-the-shelf" discrete components. An optimization of the values of specific components is required to match the aspects of the MRPCs for the given application. This simple circuit is an attractive option for the initial signal processing for MRPC prototyping and bench- or beam-testing efforts, as well as for final implementations of small-area Time-of-Flight systems with existing data acquisition systems.Comment: submitted to Nucl. Inst. and Methods, Section

    Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers

    Get PDF
    Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes. © 2006 Geurts et al
    corecore