66 research outputs found

    The percentage of CD133+ cells in human colorectal cancer cell lines is influenced by Mycoplasma hyorhinis infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mollicutes </it>contamination is recognized to be a critical issue for the cultivation of continuous cell lines. In this work we characterized the effect of <it>Mycoplasma hyorhinis </it>contamination on CD133 expression in human colon cancer cell lines.</p> <p>Methods</p> <p>MycoAlert<sup>® </sup>and mycoplasma agar culture were used to detect mycoplasma contamination on GEO, SW480 and HT-29 cell lines. Restriction fragment length polymorphism assay was used to determine mycoplasma species. All cellular models were decontaminated by the use of a specific antibiotic panel (Enrofloxacin, Ciprofloxacin, BM Cyclin 1 and 2, Mycoplasma Removal Agent and MycoZap<sup>®</sup>). The percentage of CD133 positive cells was analyzed by flow cytometry on GEO, SW480 and HT-29 cell lines, before and after <it>Mycoplasma hyorhinis </it>eradication.</p> <p>Results</p> <p><it>Mycoplasma hyorhinis </it>infected colon cancer cell lines showed an increased percentage of CD133+ cells as compared to the same cell lines rendered mycoplasma-free by effective exposure to antibiotic treatment. The percentage of CD133 positive cells increased again when mycoplasma negative cells were re-infected by <it>Mycoplasma hyorhinis</it>.</p> <p>Conclusions</p> <p><it>Mycoplasma hyorhinis </it>infection has an important role on the quality of cultured human colon cancer cell lines giving a false positive increase of cancer stem cells fraction characterized by CD133 expression. Possible explanations are (i) the direct involvement of Mycoplasma on CD133 expression or (ii) the selective pressure on a subpopulation of cells characterized by constitutive CD133 expression.</p> <p>In keeping with United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines, the present data indicate the mandatory prerequisite, for investigators involved in human colon cancer research area, of employing mycoplasma-free cell lines in order to avoid the production of non-reproducible or even false data.</p

    Novel selective, potent naphthyl TRPM8 antagonists identified through a combined ligand-and structure-based virtual screening approach

    Get PDF
    Transient receptor potential melastatin 8 (TRPM8), a nonselective cation channel, is the predominant mammalian cold temperature thermosensor and it is activated by cold temperatures and cooling compounds, such as menthol and icilin. Because of its role in cold allodynia, cold hyperalgesia and painful syndromes TRPM8 antagonists are currently being pursued as potential therapeutic agents for the treatment of pain hypersensitivity. Recently TRPM8 has been found in subsets of bladder sensory nerve fibres, providing an opportunity to understand and treat chronic hypersensitivity. However, most of the known TRPM8 inhibitors lack selectivity, and only three selective compounds have reached clinical trials to date. Here, we applied two virtual screening strategies to find new, clinics suitable, TRPM8 inhibitors. This strategy enabled us to identify naphthyl derivatives as a novel class of potent and selective TRPM8 inhibitors. Further characterization of the pharmacologic properties of the most potent compound identified, compound 1, confirmed that it is a selective, competitive antagonist inhibitor of TRPM8. Compound 1 also proved itself active in a overreactive bladder model in vivo. Thus, the novel naphthyl derivative compound identified here could be optimized for clinical treatment of pain hypersensitivity in bladder disorders but also in different other pathologies

    TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma

    Get PDF
    Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics

    Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mortality is high in patients with esophageal carcinoma as tumors are rarely detected before the disease has progressed to an advanced stage. Here, we sought to isolate cell-free DNA released into the plasma of patients with esophageal carcinoma, to analyze copy number variations of marker genes in the search for early detection of tumor progression.</p> <p>Methods</p> <p>Plasma of 41 patients with esophageal carcinoma was prospectively collected before tumor resection and chemotherapy. Our dataset resulted heterogeneous for clinical data, resembling the characteristics of the tumor. DNA from the plasma was extracted to analyze copy number variations of the <it>erbB2 </it>gene using real-time PCR assays.</p> <p>Results</p> <p>The real-time PCR assays for <it>erbB2 </it>gene showed significant (<it>P </it>= 0.001) copy number variations in the plasma of patients with esophageal carcinoma, as compared to healthy controls with high sensitivity (80%) and specificity (95%). These variations in <it>erbB2 </it>were negatively correlated to the progression free survival of these patients (<it>P </it>= 0.03), and revealed a further risk category stratification of patients with low VEGF expression levels.</p> <p>Conclusion</p> <p>The copy number variation of <it>erbB2 </it>gene from plasma can be used as prognostic marker for early detection of patients at risk of worse clinical outcome in esophageal cancer.</p

    “Molecular Anatomy”: a new multi-dimensional hierarchical scaffold analysis tool

    No full text
    The scaffold representation is widely employed to classify bioactive compounds on the basis of common core structures or correlate compound classes with specific biological activities. In this paper, we present a novel approach called “Molecular Anatomy” as a flexible and unbiased molecular scaffold-based metrics to cluster large set of compounds. We introduce a set of nine molecular representations at different abstraction levels, combined with fragmentation rules, to define a multi-dimensional network of hierarchically interconnected molecular frameworks. We demonstrate that the introduction of a flexible scaffold definition and multiple pruning rules is an effective method to identify relevant chemical moieties. This approach allows to cluster together active molecules belonging to different molecular classes, capturing most of the structure activity information, in particular when libraries containing a huge number of singletons are analyzed. We also propose a procedure to derive a network visualization that allows a full graphical representation of compounds dataset, permitting an efficient navigation in the scaffold’s space and significantly contributing to perform high quality SAR analysis. The protocol is freely available as a web interface at https://ma.exscalate.eu
    corecore