329 research outputs found

    iCub visual memory inspector: Visualising the iCub’s thoughts

    Get PDF
    This paper describes the integration of multiple sensory recognition models created by a Synthetic Autobiographical Memory into a structured system. This structured system provides high level control of the overall architecture and interfaces with an iCub simulator based in Unity which provides a virtual space for the display of recollected events

    Current perspectives on bone metastases in castrate-resistant prostate cancer

    Get PDF
    Prostate cancer is the most frequent noncutaneous cancer occurring in men. On average, men with localized prostate cancer have a high 10-year survival rate, and many can be cured. However, men with metastatic castrate-resistant prostate cancer have incurable disease with poor survival despite intensive therapy. This unmet need has led to recent advances in therapy aimed at treating bone metastases resulting from prostate cancer. The bone microenvironment lends itself to metastases in castrate-resistant prostate cancer, as a result of complex interactions between the microenvironment and tumor cells. The development of 223radium dichloride (Ra-223) to treat symptomatic bone metastases has improved survival in men with metastatic castrate-resistant prostate cancer. Moreover, Ra-223 may have effects on the tumor microenvironment that enhance its activity. Ra-223 treatment has been shown to prolong survival, and its effects on the immune system are under investigation. Because prostate cancer affects a sizable portion of the adult male population, understanding how it metastasizes to bone is an important step in advancing therapy. Clinical trials that are underway should yield new information on whether Ra-223 synergizes effectively with immunotherapy agents and whether Ra-223 has enhancing effects on the immune system in patients with prostate cancer

    Roadless and Low-Traffic Areas as Conservation Targets in Europe

    Get PDF
    With increasing road encroachment, habitat fragmentation by transport infrastructures has been a serious threat for European biodiversity. Areas with no roads or little traffic (“roadless and low-traffic areas”) represent relatively undisturbed natural habitats and functioning ecosystems. They provide many benefits for biodiversity and human societies (e.g., landscape connectivity, barrier against pests and invasions, ecosystem services). Roadless and low-traffic areas, with a lower level of anthropogenic disturbances, are of special relevance in Europe because of their rarity and, in the context of climate change, because of their contribution to higher resilience and buffering capacity within landscape ecosystems. An analysis of European legal instruments illustrates that, although most laws aimed at protecting targets which are inherent to fragmentation, like connectivity, ecosystem processes or integrity, roadless areas are widely neglected as a legal target. A case study in Germany underlines this finding. Although the Natura 2000 network covers a significant proportion of the country (16%), Natura 2000 sites are highly fragmented and most low-traffic areas (75%) lie unprotected outside this network. This proportion is even higher for the old Federal States (western Germany), where only 20% of the low-traffic areas are protected. We propose that the few remaining roadless and low-traffic areas in Europe should be an important focus of conservation efforts; they should be urgently inventoried, included more explicitly in the law and accounted for in transport and urban planning. Considering them as complementary conservation targets would represent a concrete step towards the strengthening and adaptation of the Natura 2000 network to climate change

    Sub-Lethal Irradiation of Human Colorectal Tumor Cells Imparts Enhanced and Sustained Susceptibility to Multiple Death Receptor Signaling Pathways

    Get PDF
    Background: Death receptors (DR) of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. Methodology/Principal Findings: The ability of radiation to modulate the expression of multiple death receptors (Fas/ CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTbR) was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTbR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fasinduced apoptosis, but not LTbR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation di

    Ibudilast, a Pharmacologic Phosphodiesterase Inhibitor, Prevents Human Immunodeficiency Virus-1 Tat-Mediated Activation of Microglial Cells

    Get PDF
    Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorders (HAND) occur, in part, due to the inflammatory response to viral proteins, such as the HIV-1 transactivator of transcription (Tat), in the central nervous system (CNS). Given the need for novel adjunctive therapies for HAND, we hypothesized that ibudilast would inhibit Tat-induced excess production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα) in microglial cells. Ibudilast is a non-selective cyclic AMP phosphodiesterase inhibitor that has recently shown promise as a treatment for neuropathic pain via its ability to attenuate glial cell activation. Accordingly, here we demonstrate that pre-treatment of both human and mouse microglial cells with increasing doses of ibudilast inhibited Tat-induced synthesis of TNFα by microglial cells in a manner dependent on serine/threonine protein phosphatase activity. Ibudilast had no effect on Tat-induced p38 MAP kinase activation, and blockade of adenosine A2A receptor activation did not reverse ibudilast's inhibition of Tat-induced TNFα production. Interestingly, ibudilast reduced Tat-mediated transcription of TNFα, via modulation of nuclear factor-kappa B (NF-κB) signaling, as shown by transcriptional activity of NF-κB and analysis of inhibitor of kappa B alpha (IκBα) stability. Together, our findings shed light on the mechanism of ibudilast's inhibition of Tat-induced TNFα production in microglial cells and may implicate ibudilast as a potential novel adjunctive therapy for the management of HAND
    corecore