30 research outputs found

    Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma

    Get PDF
    Maternally-transmitted associations between endosymbiotic bacteria and insects are ubiquitous. While many of these associations are obligate and mutually beneficial, many are facultative, and the mechanism(s) by which these microbes persist in their host lineages remain elusive. Inherited microbes with imperfect transmission are expected to be lost from their host lineages if no other mechanisms increase their persistence (i.e., host reproductive manipulation and/or fitness benefits to host). Indeed numerous facultative heritable endosymbionts are reproductive manipulators. Nevertheless, many do not manipulate reproduction, so they are expected to confer fitness benefits to their hosts, as has been shown in several studies that report defense against natural enemies, tolerance to environmental stress, and increased fecundity.We examined whether larval to adult survival of Drosophila hydei against attack by a common parasitoid wasp (Leptopilina heterotoma), differed between uninfected flies and flies that were artificially infected with Spiroplasma, a heritable endosymbiont of Drosophila hydei that does not appear to manipulate host reproduction. Survival was significantly greater for Spiroplasma-infected flies, and the effect of Spiroplasma infection was most evident during the host's pupal stage. We examined whether or not increased survival of Spiroplasma-infected flies was due to reduced oviposition by the wasp (i.e., pre-oviposition mechanism). The number of wasp eggs per fly larva did not differ significantly between Spiroplasma-free and Spiroplasma-infected fly larvae, suggesting that differential fly survival is due to a post-oviposition mechanism.Our results suggest that Spiroplasma confers protection to D. hydei against wasp parasitism. This is to our knowledge the first report of a potential defensive mutualism in the genus Spiroplasma. Whether it explains the persistence and high abundance of this strain in natural populations of D. hydei, as well as the widespread distribution of heritable Spiroplasma in Drosophila and other arthropods, remains to be investigated

    The Major Antigenic Membrane Protein of “Candidatus Phytoplasma asteris” Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors

    Get PDF
    Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity

    The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium <it>Wolbachia </it>is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys.</p> <p>Results</p> <p>The inclusion of inherited bacteria other than <it>Wolbachia </it>increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst <it>Wolbachia </it>remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the <it>Cardinium</it>, <it>Arsenophonus </it>and <it>Spiroplasma ixodetis </it>clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence.</p> <p>Conclusion</p> <p>This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-<it>Wolbachia </it>bacteria and their hosts.</p

    Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies : Spiroplasma is present in both laboratory and natural populations

    Get PDF
    Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the “Wigglesworthia-Sodalis-Wolbachia dogma” operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipe

    Data from: Can maternally inherited endosymbionts adapt to a novel host? Direct costs of Spiroplasma infection, but not vertical transmission efficiency, evolve rapidly after horizontal transfer into D. melanogaster

    No full text
    Maternally inherited symbionts are common in arthropods and many have important roles in host adaptation. The observation that specific symbiont lineages infect distantly related host species implies new interactions are commonly established by lateral transfer events. However, studies have shown that symbionts often perform poorly in novel hosts. We hypothesized selection on the symbiont may be sufficiently rapid that poor performance in a novel host environment is rapidly ameliorated, permitting symbiont maintenance. Here, we test this prediction for a Spiroplasma strain transinfected into the novel host Drosophila melanogaster. In the generations immediately following transinfection, the symbiont had low transmission efficiency to offspring and imposed severe fitness costs on its host. We observed that effects on host fitness evolved rapidly, being undetectable after 17 generations in the novel host, whereas vertical transmission efficiency was poorly responsive over this period. Our results suggest that long-term symbiosis may more readily be established in cases where symbionts perform poorly in just one aspect of symbiosis
    corecore