1,259 research outputs found

    Differential Regulation of Extracellular Matrix and Soluble Fibulin-1 Levels by TGF-β<inf>1</inf> in Airway Smooth Muscle Cells

    Get PDF
    Fibulin-1 (FBLN-1) is a secreted glycoprotein that is associated with extracellular matrix (ECM) formation and rebuilding. Abnormal and exaggerated deposition of ECM proteins is a hallmark of many fibrotic diseases, such as chronic obstructive pulmonary disease (COPD) where small airway fibrosis occurs. The aim of this study was to investigate the regulation of FBLN-1 by transforming growth factor beta 1 (TGF-β1) (a pro-fibrotic stimulus) in primary human airway smooth muscle (ASM) cells from volunteers with and without COPD. Human ASM cells were seeded at a density of 1×104 cells/cm2, and stimulated with or without TGF-β1 (10 ng/ml) for 72 hours before FBLN-1 deposition and soluble FBLN-1 were measured. Fold change in FBLN-1 mRNA was measured at 4, 8, 24, 48, 72 hours. In some experiments, cycloheximide (0.5 μg/ml) was used to assess the regulation of FBLN-1 production. TGF-β1 decreased the amount of soluble FBLN-1 both from COPD and non-COPD ASM cells. In contrast, the deposition of FBLN-1 into the ECM was increased in ASM cells obtained from both groups. TGF-β1 did not increase FBLN-1 gene expression at any of the time points. There were no differences in the TGF-β1 induced FBLN-1 levels between cells from people with or without COPD. Cycloheximide treatment, which inhibits protein synthesis, decreased both the constitutive release of soluble FBLN-1, and TGF-β1 induced ECM FBLN-1 deposition. Furthermore, in cycloheximide treated cells addition of soluble FBLN-1 resulted in incorporation of FBLN-1 into the ECM. Therefore the increased deposition of FBLN-1 by ASM cells into the ECM following treatment with TGF-β1 is likely due to incorporation of soluble FBLN-1 rather than de-novo synthesis. © 2013 Chen et al

    Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude

    Get PDF
    Biophysical stimuli including topography play a crucial role in the regulation of cell morphology, adhesion, migration, and cytoskeleton organization and have been known to be important in biomaterials design for tissue engineering. However, little is known about the individual effects of topographic direction, structure repetition, and feature size of the substrate on which wound healing occurs. We report on the design of a topographical gradient with wavelike features that gradually change in wavelength and amplitude, which provides an efficient platform for an in vitro wound healing assay to investigate fibroblast migration. The wound coverage rate was measured on selected areas with wavelength sizes of 2, 5, and 8 mu m in perpendicular and parallel orientations. Furthermore, a method was developed to produce independently controlled wavelength and amplitude and study which parameter has greater influence. Cell movement was guided by topographical properties, with a lower wrinkle wavelength (2 mu m) eliciting the fastest migration speed, and the migration speed increased with decreasing amplitude. However, when the amplitudes were matched, cells migrated faster on a larger wavelength. This study also highlights the sensitivity of fibroblasts to the topographic orientation, with cells moving faster in the parallel direction of the topography. The overall behavior indicated that the wavelength and amplitude both play an important role in directing cell migration. The collective cell migration was found not to be influenced by altered cell proliferation. These findings provide key insights into topography-triggered cell migration and indicate the necessity for better understanding of material-directed wound healing for designing bio-inductive biomaterials

    Combined Beta-Agonists and Corticosteroids Do Not Inhibit Extracellular Matrix Protein Production In Vitro

    Get PDF
    Background. Persistent asthma is characterized by airway remodeling. Whereas we have previously shown that neither β2-agonists nor corticosteroids inhibit extracellular matrix (ECM) protein release from airway smooth muscle (ASM) cells, the effect of their combination is unknown and this forms the rationale for the present study. Methods. ASM cells from people with and without asthma were stimulated with TGFβ1 (1 ng/ml) with or without budesonide (10−8 M) and formoterol (10−10 and 10−8 M), and fibronectin expression and IL-6 release were measured by ELISA. Bronchial rings from nonasthmatic individuals were incubated with TGFβ1 (1 ng/ml) with or without the drugs, and fibronectin expression was measured using immunohistochemistry. Results. Budesonide stimulated fibronectin deposition, in the presence or absence of TGFβ1, and this was partially reversed by formoterol (10−8 M) in both asthmatic and nonasthmatic cells. Budesonide and formoterol in combination failed to inhibit TGFβ-induced fibronectin in either cell type. A similar pattern of expression of fibronectin was seen in bronchial rings. TGFβ1-induced IL-6 release was inhibited by the combination of drugs. Conclusion. Current combination asthma therapies are unable to prevent or reverse remodeling events regulated by ASM cells

    Differential deposition of fibronectin by asthmatic bronchial epithelial cells

    Full text link
    © 2015 the American Physiological Society. Altered ECM protein deposition is a feature in asthmatic airways. Fibronectin (Fn), an ECM protein produced by human bronchial epithelial cells (HBECs), is increased in asthmatic airways. This study investigated the regulation of Fn production in asthmatic or nonasthmatic HBECs and whether Fn modulated HBEC proliferation and inflammatory mediator secretion. The signaling pathways underlying transforming growth factor (TGF)-β1-regulated Fn production were examined using specific inhibitors for ERK, JNK, p38 MAPK, phosphatidylinositol 3 kinase, and activin-like kinase 5 (ALK5). Asthmatic HBECs deposited higher levels of Fn in the ECM than nonasthmatic cells under basal conditions, whereas cells from the two groups had similar levels of Fn mRNA and soluble Fn. TGF-β1 increased mRNA levels and ECM and soluble forms of Fn but decreased cell proliferation in both cells. The rate of increase in Fn mRNA was higher in nonasthmatic cells. However, the excessive amounts of ECM Fn deposited by asthmatic cells after TGF-β1 stimulation persisted compared with nonasthmatic cells. Inhibition of ALK5 completely prevented TGF- β1-induced Fn deposition. Importantly, ECM Fn increased HBEC proliferation and IL-6 release, decreased PGE2 secretion, but had no effect on VEGF release. Soluble Fn had no effect on cell proliferation and inflammatory mediator release. Asthmatic HBECs are intrinsically primed to produce more ECM Fn, which when deposited into the ECM, is capable of driving remodeling and inflammation. The increased airway Fn may be one of the key driving factors in the persistence of asthma and represents a novel, therapeutic target

    Fibulin 1C peptide induces cell attachment and extracellular matrix deposition in lung fibroblasts

    Get PDF
    Fibulin-1 is an extracellular matrix (ECM) protein, levels of which are elevated in serum and lung tissue from patients with idiopathic pulmonary fibrosis compared to healthy volunteers. Inhibition of fibulin-1C, one of four fibulin-1 isoforms, reduced proliferation and wound healing in human airway smooth muscle (ASM) cells. This study identified the bioactive region/s of fibulin-1C which promotes fibrosis. Seven fibulin-1C peptides were synthesized and used to pre-coat tissue culture plates before lung derived ASM cells and fibroblasts from patients with pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD) or neither disease (Control) were plated. Peptide effects on in vitro measures of fibrosis: cell attachment, proliferation and viability, and ECM deposition, were examined. Among these peptides, peptide 1C1 (FBLN1C1) enhanced ASM cell and fibroblast attachment. FBLN1C1 increased mitochondrial activity and proliferation in fibroblasts. In addition, FBLN1C1 stimulated fibulin1 deposition in PF and COPD fibroblasts, and augmented fibronectin and perlecan deposition in all three groups. Peptides FBLN1C2 to FBLN1C7 had no activity. The active fibulin-1C peptide identified in this study describes a useful tool for future studies. Ongoing investigation of the role of fibulin-1 may reveal the mechanisms underlying the pathphysiology of chronic lung diseases

    Effects of cigarette smoke extract on human airway smooth muscle cells in COPD

    Full text link
    We hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA. The effects of CSE on cell attachment and wound healing were measured by toluidine blue attachment and cell tracker green wound healing assays. CSE increased the release of CXCL8 and CXCL1 from human ASM cells, and cells from smokers with COPD produced more CSE-induced CXCL1. The production of MMP-1, -3 and -10, and the deposition of collagen VIII alpha 1 (COL8A1) were increased by CSE, especially in the COPD group which had higher production of MMP-1 and deposition of COL8A1. CSE decreased ASM cell attachment and wound healing in the COPD group only. ASM cells from smokers with COPD were more sensitive to CSE stimulation, which may explain, in part, why some smokers develop COPD. Copyright ©ERS 2014

    Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy.

    Get PDF
    Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease\u27s specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D. Nat Commun 2018 Mar 8; 9(1):1007

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Toward a Surrogate Marker of Malaria Exposure: Modeling Longitudinal Antibody Measurements under Outbreak Conditions

    Get PDF
    Background: Biomarkers of exposure to Plasmodium falciparum would be a useful tool for the assessment of malaria burden and analysis of intervention and epidemiological studies. Antibodies to pre-erythrocytic antigens represent potential surrogates of exposure. Methods and Findings: In an outbreak cohort of U.S. Marines deployed to Liberia, we modeled pre- and post-deployment IgG against P. falciparum sporozoites by immunofluorescence antibody test, and both IgG and IgM against the P. falciparum circumsporozoite protein by enzyme-linked immunosorbant assay. Modeling seroconversion thresholds by a fixed ratio, linear regression or nonlinear regression produced sensitivity for identification of exposed U.S. Marines between 58-70% and specificities between 87-97%, compared with malaria-naïve U.S. volunteers. Exposure was predicted in 30-45% of the cohort. Conclusion: Each of the three models tested has merits in different studies, but further development and validation in endemic populations is required. Overall, these models provide support for an antibody-based surrogate marker of exposure to malaria

    Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c

    Get PDF
    Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c–/–) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c–/– mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    corecore