35 research outputs found
Recommended from our members
Unequal {110} Facets: The Potential Role of Intraparticle Heterogeneity and Facet Termination in Photoelectrochemical Activity of Single BiVO4 Particles
BiVO4 photoanodes are promising for solar water splitting, with photogenerated electrons and holes preferentially reacting at top {010} and lateral {110} facets, respectively. However, the mechanisms driving this facet-dependent reactivity remain unclear. Here, we investigate facet-dependent photocurrent and material heterogeneity using correlative scanning photoelectrochemical microscopy (SPCM), electron beam induced current (EBIC) mapping, and mid-IR scattering scanning near-field optical microscopy (s-SNOM). SPCM measurements of 62 BiVO4 particles confirmed higher photocurrents at lateral {110} facets compared to top {010} facets, but unexpectedly revealed variations in photocurrent among lateral facets within the same particle. Variations in lateral facet surface termination could explain the intraparticle-level reactivity heterogeneity, consistent with theoretical predictions. Nano-FTIR spectroscopy and Raman microspectroscopy indicated significant materials chemistry heterogeneity within individual particles and facets that could be attributed to variations in lattice vibration distortions that enhance the overlap between Bi 6s and O 2p orbitals. The increased orbital overlap is significant as it potentially increases hole mobility in the valence band and potentially explains the lateral facet-dependent charge separation efficiency observed in photocurrent maps. Facet-dependent electrical and EBIC measurements showed no space charge regions at interfacet junctions or metal-BiVO4 contacts under vacuum, suggesting that photogenerated holes beneath top {010} facets are unlikely to transport to lateral {110} facets to drive water/sulfite oxidation. These findings indicate the potential influence of distinct bulk properties and surface termination chemistries across different particles and facets, highlighting the importance of carefully controlling defects and surface chemistry during sample growth to optimize photocatalytic performance
A Crosstalk between the Smad and JNK Signaling in the TGF-β-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells
Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadherin expression, and TGF-β1-up-regulated α-SMA, Collagen I, and PAI-1 expression, leading to the inhibition of EMT in primarily cultured RPMCs. Furthermore, TGF-β1 induces a bimodal JNK activation with peaks at 10 minutes and 12 hours post treatment in RPMCs. In addition, the inhibition of Smad3 activation by introducing a Smad3 mutant mitigates the TGF-β1-induced second wave, but not the first wave, of JNK1 activation in RPMCs. Moreover, the inhibition of JNK1 activation prevents the TGF-β1-induced Smad3 activation and nuclear translocation, and inhibition of the TGF-β1-induced second wave of JNK activation greatly reduced TGF-β1-induced EMT in RPMCs. These data indicate a crosstalk between the JNK1 and Samd3 pathways during the TGF-β1-induced EMT and fibrotic process in RPMCs. Therefore, our findings may provide new insights into understanding the regulation of the TGF-β1-related JNK and Smad signaling in the development of fibrosis
Dialogue Design for a Robot-Based Face-Mirroring Game to Engage Autistic Children with Emotional Expressions
We present design strategies for Human Robot Interaction for school-aged autistic children with limited receptive language. Applying these strategies to the DE-ENIGMA project (large EU project addressing emotion recognition in autistic children) supported development of a new activity for in facial expression imitation whereby the robot imitates the child's face to encourage the child to notice facial expressions in a play-based game. A usability case study with 15 typically-developing children aged 4--6 at an English-language school in the Netherlands was performed to observe the feasibility of the setup and make design revisions before exposing the robot to autistic children
Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells
N-Glycans differentially regulate eosinophil and neutrophil recruitment during allergic airway inflammation.
Allergic airway inflammation, including asthma, is usually characterized by the predominant recruitment of eosinophils. However, neutrophilia is also prominent during severe exacerbations. Cell surface-expressed glycans play a role in leukocyte trafficking and recruitment during inflammation. Here, the involvement of UDP-N-acetylglucosamine:α-6-D-mannoside β1,6-N-acetylglucosaminyltransferase V (MGAT5)-modified N-glycans in eosinophil and neutrophil recruitment during allergic airway inflammation was investigated. Allergen-challenged Mgat5-deficient (Mgat5(-/-)) mice exhibited significantly attenuated airway eosinophilia and inflammation (decreased Th2 cytokines, mucus production) compared with WT counterparts, attributable to decreased rolling, adhesion, and survival of Mgat5(-/-) eosinophils. Interestingly, allergen-challenged Mgat5(-/-) mice developed airway neutrophilia and increased airway reactivity with persistent elevated levels of proinflammatory cytokines (IL-17A, TNFα, IFNγ)). This increased neutrophil recruitment was also observed in LPS- and thioglycollate (TG)-induced inflammation in Mgat5(-/-) mice. Furthermore, there was significantly increased recruitment of infused Mgat5(-/-) neutrophils compared with WT neutrophils in the peritoneal cavity of TG-exposed WT mice. Mgat5(-/-) neutrophils demonstrated enhanced adhesion to P-selectin as well as increased migration toward keratinocyte-derived chemokine compared with WT neutrophils in vitro along with increased calcium mobilization upon activation and expression of elevated levels of CXCR2, which may contribute to the increased neutrophil recruitment. These data indicate an important role for MGAT5-modified N-glycans in differential regulation of eosinophil and neutrophil recruitment during allergic airway inflammation
Reduced expression of galectin-1 and galectin-9 by leucocytes in asthma patients
Accumulating evidence shows that galectins play roles in the initiation and resolution phases of inflammatory responses by promoting anti- or proinflammatory effects. This study investigated the presence of three members of the galectin family (galectin-1, -3 and -9) in induced sputum samples of asthma patients, as well as their possible implication in the immunopathogenesis of human asthma. Levels of interleukin (IL)-5, IL-13, and galectins were determined in leucocytes isolated from induced sputum samples by reverse transcription–polymerase chain reaction (RT–PCR) immunofluorescence and flow cytometry. High levels of IL-5 and IL-13 mRNA were detected in sputum cells from asthma patients. In parallel, immunoregulatory proteins galectin-1 and galectin-9 showed a reduced expression on macrophages from sputum samples compared with cells from healthy donors. In-vitro immunoassays showed that galectin-1 and galectin-9, but not galectin-3, are able to induce the production of IL-10 by peripheral blood mononuclear cells from healthy donors. These findings indicate that macrophages from sputum samples of asthma patients express low levels of galectin-1 and galectin-9, favouring the exacerbated immune response observed in this disease
