184 research outputs found
Equity as a Prerequisite for Stability of Cooperation on Global Public Good Provision
Analysing cooperative provision of a global public good such as climate protection, we explore the relationship between equitable burden sharing on the one hand and core stability on the other. To assess the size of the burden which a public good contribution entails for a country, we make use of a specific measure based on Moulin (Econometrica 55:963-977, 1987). In particular, we show that a Pareto optimal allocation which is not in the core can always be blocked by a group of countries with the highest Moulin sacrifices. In this sense, it is the 'overburdening' and thus 'unfair' treatment of some countries that provides the reason for core instability. By contrast, a Pareto optimal allocation is in the core if the public good contributions are fairly equally distributed according to their Moulin sacrifices. The potential implications of our theoretical analysis for global climate policy are also discussed
Specific Cognitive Deficits in ADHD: A Diagnostic Concern in Differential Diagnosis
We present a critical account of existing tools used to diagnose children with Attention Deficit Hyperactivity Disorder and to make a case for the assessment of cognitive impairments as a part of diagnostic system. Surveys have shown that clinicians rely almost entirely upon subjective reports or their own clinical judgment when arriving at diagnostic decisions relating to this prevalent disorder. While information from parents and teachers should always be carefully considered, they are often influenced by a host of emotional and perceptual factors. It increases the possibility for misdiagnosis of a condition like ADHD. Recent experimental literature on ADHD has identified unique underlying cognitive dysfunction, specific to ADHD. Therefore, we propose that there is a need to incorporate information on cognitive mechanisms underlying ADHD and inculcate such information in the diagnostic system, which will provide a more sensitive as well as specific tool in differential diagnosis of ADHD
Neural Correlate of Filtering of Irrelevant Information from Visual Working Memory
In a dynamic environment stimulus task relevancy could be altered through time and it is not always possible to dissociate relevant and irrelevant objects from the very first moment they come to our sight. In such conditions, subjects need to retain maximum possible information in their WM until it is clear which items should be eliminated from WM to free attention and memory resources. Here, we examined the neural basis of irrelevant information filtering from WM by recording human ERP during a visual change detection task in which the stimulus irrelevancy was revealed in a later stage of the task forcing the subjects to keep all of the information in WM until test object set was presented. Assessing subjects' behaviour we found that subjects' RT was highly correlated with the number of irrelevant objects and not the relevant one, pointing to the notion that filtering, and not selection, process was used to handle the distracting effect of irrelevant objects. In addition we found that frontal N150 and parietal N200 peak latencies increased systematically as the amount of irrelevancy load increased. Interestingly, the peak latency of parietal N200, and not frontal N150, better correlated with subjects' RT. The difference between frontal N150 and parietal N200 peak latencies varied with the amount of irrelevancy load suggesting that functional connectivity between modules underlying fronto-parietal potentials vary concomitant with the irrelevancy load. These findings suggest the existence of two neural modules, responsible for irrelevant objects elimination, whose activity latency and functional connectivity depend on the number of irrelevant object
The Interaction of N-Acylhomoserine Lactone Quorum Sensing Signaling Molecules with Biological Membranes: Implications for Inter-Kingdom Signaling
The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling. However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic targets.The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL) produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole potential for receptor conformation and the implications for immune modulation are discussed.Our observations support previous findings that increasing AHL lipophilicity increases the immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor
The relationship between gambling event frequency, motor response inhibition, arousal, and dissociative experience
Speed of play has been identified as a key structural characteristic in gambling behaviour, where games involving higher playing speeds enhance the experience of gambling. Of interest in the present study is the consistent finding that games with higher event frequencies are preferred by problem gamblers and are associated with more negative gambling outcomes, such as difficulty quitting the game and increased monetary loss. The present study investigated the impact of gambling speed of play on executive control functioning, focusing on how increased speeds of play impact motor response inhibition, and the potential mediating role arousal and dissociative experience play in this relationship. Fifty regular non-problem gamblers took part in a repeated-measures experiment where they gambled with real money on a simulated slot machine across five speed of play conditions. Response inhibition was measured using an embedded Go/No-Go task, where participants had to withhold motor responses, rather than operating the spin button on the slot machine when a specific colour cue was present. Results indicated that response inhibition performance was significantly worse during faster speeds of play, and that the role of arousal in this relationship was independent of any motor priming affect. The implications of these findings for gambling legislation and gambling harm-minimisation approaches are discussed
Capacity and Procedural Accounts of Impaired Memory in Depression
Findings of impaired memory in states of dysphoria or depression are summarized and subsumed under different accounts of mood-related memory deficits. Theoretical accounts based on the assumption of a storage system of limited capacity are compared to accounts which emphasize the role of procedures and strategies in attending and remembering. Two reanalyses of a recent experiment in the process-dissociation paradigm are reported. They address issues of dysphoria-related differences in automatic versus controlled uses of memory in a task of word-stem completion. The two reanalyses rest on different assumptions about the relation between automatic and controlled components, but they converge in highlighting the advantages of a procedural rather than capacity-based view of memory deficits. finally. similarities to other research domains and theoretical approaches are outlined
Structural Characteristics and Stellar Composition of Low Surface Brightness Disk Galaxies
We present UBVI surface photometry of a sample of low surface brightness
(LSB) disk galaxies. LSB disk galaxies are fairly well described as exponential
disks with no preferred value for either scale length, central surface
brightness, or rotational velocity. Indeed, the distribution of scale lengths
is indistinguishable from that of high surface brightness spirals, indicating
that dynamically similar galaxies (e.g., those with comparable Rv^2) exist over
a large range in surface density.
These LSB galaxies are strikingly blue. The complete lack of correlation
between central surface brightness and color rules out any fading scenario.
Similarly, the oxygen abundances inferred from HII region spectra are
uncorrelated with color so the low metallicities are not the primary cause of
the blue colors. While these are difficult to interpret in the absence of
significant star formation, the most plausible scenario is a stellar population
with a young mean age stemming from late formation and subsequent slow
evolution.
These properties suggest that LSB disks formed from low initial overdensities
with correspondingly late collapse times.Comment: Astronomical Journal, in press 45 pages uuencoded postscript (368K)
including 9 multipart figures also available by anonymous ftp @
ftp.ast.cam.ac.uk /pub/ssm/phot.uu CAP-30-210442962983742937
Properties of V1 Neurons Tuned to Conjunctions of Visual Features: Application of the V1 Saliency Hypothesis to Visual Search behavior
From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target
Toward a “constitution” for behavioral policy-making
Behavioral policy interventions aimed at redirecting individuals’ behavior toward optimal choices are characterized by an important issue which is often overlooked: the lack of an instrument to define what “optimal” means. If agents are subject to behavioral biases leading them to make “wrong” choices, the policy-maker can no longer rely on the revealed preferences approach (e.g., what people choose is what people prefer) for defining a welfare criterion. In this article, we reiterate the argument put forward by some scholars that choosing a suitable welfare criterion once the link between observed choices and individuals’ preferences is broken becomes a problematic task. We review the state of the art in the literature and the possible approaches proposed to overcome the problem, concluding that a solution has not yet been reached. Moreover, we argue that the lack of an established welfare criterion characterizing behavioral policy-making could pave the way to government wanting to restrict individual freedom. In the absence of any legislative constraint for the executive, stating that what individuals choose is not what they prefer in principle justifies any freedom-reducing government intervention, since choices can be arbitrarily labeled “sub-optimal” or “welfare-reducing.” To avoid this risk without turning down the potential of behavioral policy-making, we propose that an independent committee establishes ex ante procedural rules and domains where behavioral policy-making can be implemented. The article suggests some possible examples of normative provisions characterizing this constitution-type document, such as the selective identification of the only sectors where behavioral policies could be effectively applied, the periodic evaluation of policy effects, and the use of sunset clauses
- …
