35 research outputs found
Peaks and Troughs of Three-Dimensional Vestibulo-ocular Reflex in Humans
The three-dimensional vestibulo-ocular reflex (3D VOR) ideally generates compensatory ocular rotations not only with a magnitude equal and opposite to the head rotation but also about an axis that is collinear with the head rotation axis. Vestibulo-ocular responses only partially fulfill this ideal behavior. Because animal studies have shown that vestibular stimulation about particular axes may lead to suboptimal compensatory responses, we investigated in healthy subjects the peaks and troughs in 3D VOR stabilization in terms of gain and alignment of the 3D vestibulo-ocular response. Six healthy upright sitting subjects underwent whole body small amplitude sinusoidal and constant acceleration transients delivered by a six-degree-of-freedom motion platform. Subjects were oscillated about the vertical axis and about axes in the horizontal plane varying between roll and pitch at increments of 22.5° in azimuth. Transients were delivered in yaw, roll, and pitch and in the vertical canal planes. Eye movements were recorded in with 3D search coils. Eye coil signals were converted to rotation vectors, from which we calculated gain and misalignment. During horizontal axis stimulation, systematic deviations were found. In the light, misalignment of the 3D VOR had a maximum misalignment at about 45°. These deviations in misalignment can be explained by vector summation of the eye rotation components with a low gain for torsion and high gain for vertical. In the dark and in response to transients, gain of all components had lower values. Misalignment in darkness and for transients had different peaks and troughs than in the light: its minimum was during pitch axis stimulation and its maximum during roll axis stimulation. We show that the relatively large misalignment for roll in darkness is due to a horizontal eye movement component that is only present in darkness. In combination with the relatively low torsion gain, this horizontal component has a relative large effect on the alignment of the eye rotation axis with respect to the head rotation axis
Erratum: "Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data" (2019, ApJ, 879, 10)
This is a correction for 2019 ApJ 879 1
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Vestibuloocular Reflex Adaptation Investigated With Chronic Motion-Modulated Electrical Stimulation of Semicircular Canal Afferents
To investigate vestibuloocular reflex (VOR) adaptation produced by changes in peripheral vestibular afference, we developed and tested a vestibular “prosthesis” that senses yaw-axis angular head velocity and uses this information to modulate the rate of electrical pulses applied to the lateral canal ampullary nerve. The ability of the brain to adapt the different components of the VOR (gain, phase, axis, and symmetry) during chronic prosthetic electrical stimulation was studied in two squirrel monkeys. After characterizing the normal yaw-axis VOR, electrodes were implanted in both lateral canals and the canals were plugged. The VOR in the canal-plugged/instrumented state was measured and then unilateral stimulation was applied by the prosthesis. The VOR was repeatedly measured over several months while the prosthetic stimulation was cycled between off, low-sensitivity, and high-sensitivity stimulation states. The VOR response initially demonstrated a low gain, abnormal rotational axis, and substantial asymmetry. During chronic stimulation the gain increased, the rotational axis improved, and the VOR became more symmetric. Gain changes were augmented by cycling the stimulation between the off and both low- and high-sensitivity states every few weeks. The VOR time constant remained low throughout the period of chronic stimulation. These results demonstrate that the brain can adaptively modify the gain, axis, and symmetry of the VOR when provided with chronic motion-modulated electrical stimulation by a canal prosthesis
Tilt and translation motion perception during off-vertical axis rotation.
International audienceThe effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10 degrees and 20 degrees off-vertical at 45 degrees /s (0.125 Hz) and 20 degrees off-vertical at 180 degrees /s (0.5 Hz). Perceived motion was evaluated using verbal reports and a joystick capable of recording tilt and translation in both sagittal and lateral planes. Eye movements were also recorded using videography. At the lower frequency, subjects reported the perception of progressing along the edge of a cone, whereas at the higher frequency they had the sensation of progressing along the edge of an upright cylinder. Tilt perception and ocular torsion significantly increased as the tilt angle increased from 10 degrees to 20 degrees at the lower frequency, and then decreased at the higher frequency. The phase lag of ocular torsion increased as a function of frequency, while the phase lag of tilt perception did not change. Horizontal eye movements were small at the lower frequency and showed a phase lead relative to the linear acceleration stimulus. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. A second data set was obtained in 12 subjects to compare motion perception phase when using a simple push-button to indicate nose-up orientation, continuous setting of pitch tilt alone, or continuous setting of tilt and translation in both pitch and roll planes as in the first data set. This set of measurements indicated that in the frequency range studied subjects tend to lead the stimulus when using a push-button task while lagging the stimulus when using a continuous setting of tilt with a joystick. Both amplitude and phase of tilt perception using the joystick were not different whether concentrating on pitch tilt alone or attempting a more complex reporting of tilt and translation in both sagittal and lateral planes. During dynamic linear stimuli in the absence of canal and visual input, a change in stimulus frequency alone elicits similar changes in the amplitude of both self-motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency over this limited range. These results are consistent with the hypothesis that neural processing to distinguish tilt and translation stimuli differs between eye movements and motion perception
Temporal dynamics of semicircular canal and otolith function following acute unilateral vestibular deafferentation in humans
Difference in the perception of the horizon during true and simulated tilt in the absence of semicircular canal cues.
Perception of tilt (somatogravic illusion) in response to sustained linear acceleration is generally attributed to the otolithic system which reflects either a translation of the head or a reorientation of the head with respect to gravity (tilt/translation ambiguity). The main aim of this study was to compare the tilt perception during prolonged static tilt and translation between 8 and 20 degrees of tilt relative to the gravitoinertial forces (i.e., G and GIF, respectively) when the semicircular cues were no more available. An indirect measure of tilt perception was estimated by means of a visual and kinesthetic judgment of the gravitational horizon. The main results contrast with the interpretation regarding the tilt/translation ambiguity as the same orientation relative to the shear forces G for the true tilt or GIF in the centrifuge did not induce the same horizon perception. Visual adjustment and arm pointing in the centrifuge were always above the ones observed in a G environment. Part of the lowering of the judgment in the centrifuge may be related to the mechanical effect of GIF on the effectors as shown by the shift of the egocentric coordinates in the direction of GIF. The role of the extravestibular graviceptors in the judgment of the degree of tilt of one's own body relative to G or GIF was discussed
Velocity storage activity is affected after sustained centrifugation: A relationship with spatial disorientation
Prolonged exposure to hypergravity in a human centrifuge can lead to post-rotary spatial disorientation and motion sickness. These symptoms are mainly provoked by tilting head movements and resemble the Space Adaptation Syndrome. We hypothesized that the occurrence of these post-rotary effects might be related to changes in the velocity storage (VS) mechanism, which is suggested to play an important role in spatial orientation. In particular, we investigated whether the re-orientation of the eye velocity vector (EVV) towards gravity during off-vertical optokinetic stimulation was affected by centrifugation. Twelve human subjects were exposed to a hypergravity load of 3G (G-load directed along the naso-occipetal axis) for a duration of 90 min. Before and after centrifugation we recorded optokinetic nystagmus (OKN) elicited by a stimulus pattern moving about the subject's yaw axis, with the head erect and tilted 45° to both sides. During OKN with the head erect, we observed a pitch-down component, reorienting the EVV on average 4.5° (SD 3.6, pretest values) away from the stimulus axis. Head tilt induced an additional shift of the EVV towards the spatial vertical of 6.4° on average (SD 3.2). This head-tilt induced reorientation was significantly decreased after centrifugation to 4.7° (SD 2.9), suggesting a reduction of VS-activity. By means of a vector model we estimated the reduction in VS-activity at 31%. Such a decrease in VS-activity might reflect a deterioration of the ability to integrate sensory signals to obtain an estimate of gravity during tilting head movements, resulting in motion sickness in susceptible subjects
