109 research outputs found

    Placental capillary pericytes release excess extracellular vesicles under hypoxic conditions inducing a pro-angiogenic profile in term pregnancy

    Get PDF
    Supplementary data available online at: https://www.sciencedirect.com/science/article/pii/S0006291X2300181X#appsec1Copyright © 2023 The Authors. Pericytes are multifunctional cells wrapped around capillary endothelia, essential for vascular health, development, and blood flow regulation, although their role in human placental chorionic villi has not been fully explored. The second half of normal pregnancy is characterized by a progressive decline in placental and fetal oxygen levels which, by term, comprises a substantial degree of hypoxia. We hypothesized this hypoxia would stimulate pericyte regulation of chorionic villous capillary function. This study's objective was to investigate the role of hypoxia on normal term placental pericytes (PLVP) and their signaling to endothelial cells. First, we confirmed fetoplacental hypoxia at term by a new analysis of umbilical arterial blood oxygen tension of 3,010 healthy singleton neonates sampled at caesarean section and before labor. We then measured the release of cytokines, chemokines, and small extracellular vesicles (PLVPsv), from PLVP cultured at 20%, 8% and 1% O2. As O2 levels decreased, secreted cytokines and chemokines [interleukin-6 (IL-6), interleukin-1α (IL-1α) and vascular endothelial growth factor (VEGF)], and small extracellular vesicle markers, (Alix, Syntenin and CD9) increased significantly in the culture supernatants. When primary human umbilical vein endothelial cells (HUVEC) were cultured with PLVPsv, polygon formation, number, and tube formation length was significantly increased compared to cells not treated with PLVPsv, indicating PLVPsv stimulated angiogenesis. We conclude that adding PLVPsv stimulates angiogenesis and vessel stabilization on neighboring endothelial cells in response to hypoxia in term pregnancy compared to no addition of PLVPsv. Our finding that PLVP can release angiogenic molecules via extracellular vesicles in response to hypoxia may apply to other organ systems.MRC Program Grant (MR/J003360/1); rad Sutherland is supported by the National Health and Medical Research Council of Australia (APP1137776)

    Effects of hydrogen sulfide on hemodynamics, inflammatory response and oxidative stress during resuscitated hemorrhagic shock in rats

    Get PDF
    Introduction Hydrogen sulfide (H2S) has been shown to improve survival in rodent models of lethal hemorrhage. Conversely, other authors have reported that inhibition of endogenous H2S production improves hemodynamics and reduces organ injury after hemorrhagic shock. Since all of these data originate from unresuscitated models and/or the use of a pre-treatment design, we therefore tested the hypothesis that the H2S donor, sodium hydrosulfide (NaHS), may improve hemodynamics in resuscitated hemorrhagic shock and attenuate oxidative and nitrosative stresses. Methods Thirty-two rats were mechanically ventilated and instrumented to measure mean arterial pressure (MAP) and carotid blood flow (CBF). Animals were bled during 60 minutes in order to maintain MAP at 40 ± 2 mm Hg. Ten minutes prior to retransfusion of shed blood, rats randomly received either an intravenous bolus of NaHS (0.2 mg/kg) or vehicle (0.9% NaCl). At the end of the experiment (T = 300 minutes), blood, aorta and heart were harvested for Western blot (inductible Nitric Oxyde Synthase (iNOS), Nuclear factor-κB (NF-κB), phosphorylated Inhibitor κB (P-IκB), Inter-Cellular Adhesion Molecule (I-CAM), Heme oxygenase 1(HO-1), Heme oxygenase 2(HO-2), as well as nuclear respiratory factor 2 (Nrf2)). Nitric oxide (NO) and superoxide anion (O2 -) were also measured by electron paramagnetic resonance. Results At the end of the experiment, control rats exhibited a decrease in MAP which was attenuated by NaHS (65 ± 32 versus 101 ± 17 mmHg, P < 0.05). CBF was better maintained in NaHS-treated rats (1.9 ± 1.6 versus 4.4 ± 1.9 ml/minute P < 0.05). NaHS significantly limited shock-induced metabolic acidosis. NaHS also prevented iNOS expression and NO production in the heart and aorta while significantly reducing NF-kB, P-IκB and I-CAM in the aorta. Compared to the control group, NaHS significantly increased Nrf2, HO-1 and HO-2 and limited O2 - release in both aorta and heart (P < 0.05). Conclusions NaHS is protective against the effects of ischemia reperfusion induced by controlled hemorrhage in rats. NaHS also improves hemodynamics in the early resuscitation phase after hemorrhagic shock, most likely as a result of attenuated oxidative stress. The use of NaHS hence appears promising in limiting the consequences of ischemia reperfusion (IR)

    Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer

    Get PDF
    BACKGROUND: New chemotherapy regimens for patients with colorectal cancer have improved survival, but at the cost of clinical toxicity. Oxaliplatin, an agent used in first-line therapy for metastatic colorectal cancer, causes acute and chronic neurotoxicity. This study was performed to carefully assess the incidence, type and duration of oxaliplatin neurotoxicity. METHODS: A detailed questionnaire was completed after each chemotherapy cycle for patients with metastatic colorectal cancer enrolled in a phase I trial of oxaliplatin and capecitabine. An oxaliplatin specific neurotoxicity scale was used to grade toxicity. RESULTS: Eighty-six adult patients with colorectal cancer were evaluated. Acute neuropathy symptoms included voice changes, visual alterations, pharyngo-laryngeal dysesthesia (lack of awareness of breathing); peri-oral or oral numbness, pain and symptoms due to muscle contraction (spasm, cramps, tremors). When the worst neurotoxicity per patient was considered, grade 1/2/3/4 dysesthesias and paresthesias were seen in 71/12/5/0 and 66/20/7/1 percent of patients. By cycles 3, 6, 9, and 12, oxaliplatin dose reduction or discontinuation was needed in 2.7%, 20%, 37.5% and 62.5% of patients. CONCLUSION: Oxaliplatin-associated acute neuropathy causes a variety of distressing, but transient, symptoms due to peripheral sensory and motor nerve hyperexcitability. Chronic neuropathy may be debilitating and often necessitates dose reductions or discontinuation of oxaliplatin. Patients should be warned of the possible spectrum of symptoms and re-assured about the transient nature of acute neurotoxicity. Ongoing studies are addressing the treatment and prophylaxis of oxaliplatin neurotoxicity

    On the Origin of S0 Galaxies

    Full text link
    I will review the basic properties of S0 galaxies in the local Universe in relation to both elliptical and spiral galaxies, their neighbours on the Hubble sequence, and also in relation to dwarf spheroidal (dSph) galaxies. This will include colours, luminosities, spectral features, information about the age and metallicity composition of their stellar populations and globular clusters, about their ISM content, as well as kinematic signatures and their implications for central black hole masses and past interaction events, and the number ratios of S0s to other galaxy types in relation to environmental galaxy density. I will point out some caveats as to their morphological discrimination against other classes of galaxies, discuss the role of dust and the wavelength dependence of bulge/disk light ratios. These effects are of importance for investigations into the redshift evolution of S0 galaxies -- both as individual objects and as a population. The various formation and transformation scenarios for S0 and dSph galaxies will be presented and confronted with the available observations.Comment: Invited Review, 18 pages, ``BARS 2004'' Conference, South Africa, June 2004, eds.: K. C. Freeman, D. L. Block, I. Puerari, R. Groess, Kluwer, in pres
    corecore