72 research outputs found

    Skeletal muscle gene expression in response to resistance exercise: sex specific regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, such as resistance exercise (RE), might provide insight to the contributors of sexual dimorphism of muscle phenotypes. We used microarrays to profile the transcriptome of the biceps brachii of young men and women who underwent an acute unilateral RE session following 12 weeks of progressive training. Bilateral muscle biopsies were obtained either at an early (4 h post-exercise) or late recovery (24 h post-exercise) time point. Muscle transcription profiles were compared in the resting state between men (n = 6) and women (n = 8), and in response to acute RE in trained exercised vs. untrained non-exercised control muscle for each sex and time point separately (4 h post-exercise, n = 3 males, n = 4 females; 24 h post-exercise, n = 3 males, n = 4 females). A logistic regression-based method (LRpath), following Bayesian moderated t-statistic (IMBT), was used to test gene functional groups and biological pathways enriched with differentially expressed genes.</p> <p>Results</p> <p>This investigation identified extensive sex differences present in the muscle transcriptome at baseline and following acute RE. In the resting state, female muscle had a greater transcript abundance of genes involved in fatty acid oxidation and gene transcription/translation processes. After strenuous RE at the same relative intensity, the time course of the transcriptional modulation was sex-dependent. Males experienced prolonged changes while females exhibited a rapid restoration. Most of the biological processes involved in the RE-induced transcriptional regulation were observed in both males and females, but sex specificity was suggested for several signaling pathways including activation of notch signaling and TGF-beta signaling in females. Sex differences in skeletal muscle transcriptional regulation might implicate a mechanism behind disproportional muscle growth in males as compared with female counterparts after RE training at the same relative intensity.</p> <p>Conclusions</p> <p>Sex differences exist in skeletal muscle gene transcription both at rest and following acute RE, suggesting that sex is a significant modifier of the transcriptional regulation in skeletal muscle. The findings from the present study provide insight into the molecular mechanisms for sex differences in muscle phenotypes and for muscle transcriptional regulation associated with training adaptations to resistance exercise.</p

    Emotional, behavioural problems and cigarette smoking in adolescence: findings of a Greek cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although several studies have reported findings concerning the association between smoking and emotional/behavioural problems, little research has investigated this association after controlling for confounding factors which have been found to be significantly correlated with both cigarette smoking and emotional/behavioural problems and may have a strong effect on the relationship between adolescents' mental health and smoking. The present study attempted to assess the association between adolescents' smoking status and their emotional/behavioural problems after controlling for a number of possible confounders (i.e. age, gender, parental smoking status, exposure to family smoking, family socioeconomic status, adolescents' leisure time) in a Greek nation-wide school-based sample.</p> <p>Methods</p> <p>Participants completed a questionnaire which retrieved information about age, gender, family socioeconomic status, smoking status, parental smoking, adolescents' leisure time and emotional/behavioural problems. Data were modelled using multiple logistic regression analysis with adolescents' smoking status as the dependent variable.</p> <p>Results</p> <p>A total of 1194 (i.e. 63% response rate) of self-reported questionnaires (40.1% boys, 59.9% girls; 12-18 years old) were returned. Data from 1030 participants with full data were analyzed. Cigarette smoking was strongly associated with higher levels of emotional/behavioural problems (p < 0.001) and the association was not moderated (OR = 1.13, 95% CI: 1.08-1.18) after controlling for the effects of other covariates. Emotional symptoms, conduct problems and hyperactivity/inattention were all significantly associated with adolescents' current smoking.</p> <p>Conclusions</p> <p>This study supports the association between smoking and emotional/behavioural problems among adolescents. Addressing adolescents' needs regarding their emotional/behavioural health could be helpful in the development of effective anti-smoking strategies in school environment and elsewhere.</p

    Gene Expression Divergence is Coupled to Evolution of DNA Structure in Coding Regions

    Get PDF
    Sequence changes in coding region and regulatory region of the gene itself (cis) determine most of gene expression divergence between closely related species. But gene expression divergence between yeast species is not correlated with evolution of primary nucleotide sequence. This indicates that other factors in cis direct gene expression divergence. Here, we studied the contribution of DNA three-dimensional structural evolution as cis to gene expression divergence. We found that the evolution of DNA structure in coding regions and gene expression divergence are correlated in yeast. Similar result was also observed between Drosophila species. DNA structure is associated with the binding of chromatin remodelers and histone modifiers to DNA sequences in coding regions, which influence RNA polymerase II occupancy that controls gene expression level. We also found that genes with similar DNA structures are involved in the same biological process and function. These results reveal the previously unappreciated roles of DNA structure as cis-effects in gene expression

    Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction

    Get PDF
    The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the nociceptin/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125 or 0.5 mg/infusion) both under a Fixed Ratio 1 and a Progressive Ratio schedule of reinforcement compared to wild type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showeda significantly lower drug intake compared to Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.Neuropsychopharmacology accepted article preview online, 26 August 2016. doi:10.1038/npp.2016.171

    Intestinal microbiota in human health and disease: the impact of probiotics

    Get PDF
    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis

    Post-Retrieval Extinction Attenuates Cocaine Memories

    No full text
    Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine-related memories by using the post-retrieval extinction paradigm in male Sprague Dawley rats. Results revealed that starting extinction training 1 h after cocaine contextual memory was retrieved significantly attenuated cocaine-primed reinstatement of conditioned place preference (CPP) and relapse of cocaine CPP (drug-free and cocaine-primed) following 30 days of abstinence. However, animals that did not retrieve the contextual cocaine memory before extinction training, or animals that began extinction training 24 h after retrieval (outside of the reconsolidation window), demonstrated normal cocaine CPP. Conversely, animals that received additional CPP conditioning, rather than extinction training, 1 h after reactivation of cocaine memory showed enhanced cocaine CPP compared with animals that did not reactivate the cocaine memory before conditioning. These results reveal that a behavioral manipulation that takes advantage of reconsolidation and extinction of drug memories may be useful in decreasing preference for, and abuse of, cocaine

    Paneth cell defensins and the regulation of the microbiome: Détente at mucosal surfaces

    No full text
    Recently, our laboratory demonstrated that Paneth cell defensins, innate antimicrobial peptides that contribute to mucosal host defense, are able to regulate the composition of the intestinal bacterial microbiome. Using complementary mouse models of defensin deficiency (MMP 7−/−) and surplus (HD 5+/+), we noted defensin-dependent reciprocal shifts in the dominant bacterial species of the small intestine, without changes in total bacterial numbers. In addition, mice that expressed HD 5 showed a significant loss of segemented filamentous bacteria (SF B), resulting in reduced numbers of Th17 cells in the lamina propria. This data showed a novel role for PC defensins in intestinal homeostasis, by regulation of the small intestinal microbiome. The microbiome plays an essential role in mediating host physiology, metabolism and immune response. The ability of PC defensins to regulate the composition of the biome suggests a much broader importance of these innate immune effectors than previously considered. In this addendum, the role of PC defensins in the regulation of the intestinal microbiome is reviewed, and discussed in the context of recent evidence that highlights the important role of PC s and defensins in the pathophysiology of inflammatory bowel disease
    corecore