1,645 research outputs found

    Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis

    Get PDF
    Muscle dysfunction is a common feature of severe sepsis and multi-organ failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP-3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit ROS production. Using a murine model, we examined metabolic, cardiovascular and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Mitochondrial membrane potential was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP-3 protein abundance at 24 hours, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and phosphorylation pathway. However, UCP-3 does not play an important functional role, despite its upregulation

    Article image contrast, image pre-processing, and T₁ mapping affect MRI radiomic feature repeatability in patients with colorectal cancer liver metastases

    Get PDF
    Imaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features from four MR sequences: pre-contrast T_{1}- and T_{2}-weighted images, pre-contrast quantitative T_{1} maps (qT_{1}), and contrast-enhanced T_{1} weighted images. Fifty-one patients with colorectal cancer liver metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian distributions, but Box–Cox transformations enabled ICCs and RCs to be calculated appropriately for an average of 97% of features across sequences. ICCs ranged from 0.30 to 0.99, with volume and other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of features from non-normalised images exhibited significantly different ICCs in pair-wise sequence comparisons. Normalisation tended to increase ICCs for pre-contrast T_{1}- and T_{2}-weighted images, and decrease ICCs for qT_{1} maps. RCs tended to vary more between sequences than ICCs, showing that evaluations of feature performance depend on the chosen metric. This work suggests that feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps, should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition, as different repeatability metrics can provide different insights into a specific feature, consideration of the appropriate metric should be taken in a study-specific context

    Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop

    Get PDF
    This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously

    Spatially Explicit Data: Stewardship and Ethical Challenges in Science

    Get PDF
    Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration

    Challenges to conducting research with older people living in nursing homes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although older people are increasingly cared for in nursing homes towards the end of life, there is a dearth of research exploring the views of residents. There are however, a number of challenges and methodological issues involved in doing this. The aim of this paper is to discuss some of these, along with residents' views on taking part in a study of the perceptions of dignity of older people in care homes and make recommendations for future research in these settings.</p> <p>Methods</p> <p>Qualitative interviews were used to obtain the views on maintaining dignity of 18 people aged 75 years and over, living in two private nursing homes in South East London. Detailed field notes on experiences of recruiting and interviewing participants were kept.</p> <p>Results</p> <p>Challenges included taking informed consent (completing reply slips and having a 'reasonable' understanding of their participation); finding opportunities to conduct interviews; involvement of care home staff and residents' families and trying to maintain privacy during the interviews. Most residents were positive about their participation in the study, however, five had concerns either before or during their interviews. Although 15 residents seemed to feel free to air their views, three seemed reluctant to express their opinions on their care in the home.</p> <p>Conclusion</p> <p>Although we experienced many challenges to conducting this study, they were not insurmountable, and once overcome, allowed this often unheard vulnerable group to express their views, with potential long-term benefits for future delivery of care.</p

    Effects of the physiological parameters on the signal-to-noise ratio of single myoelectric channel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important measure of the performance of a myoelectric (ME) control system for powered artificial limbs is the signal-to-noise ratio (SNR) at the output of ME channel. However, few studies illustrated the neuron-muscular interactive effects on the SNR at ME control channel output. In order to obtain a comprehensive understanding on the relationship between the physiology of individual motor unit and the ME control performance, this study investigates the effects of physiological factors on the SNR of single ME channel by an analytical and simulation approach, where the SNR is defined as the ratio of the mean squared value estimation at the channel output and the variance of the estimation.</p> <p>Methods</p> <p>Mathematical models are formulated based on three fundamental elements: a motoneuron firing mechanism, motor unit action potential (MUAP) module, and signal processor. Myoelectric signals of a motor unit are synthesized with different physiological parameters, and the corresponding SNR of single ME channel is numerically calculated. Effects of physiological multi factors on the SNR are investigated, including properties of the motoneuron, MUAP waveform, recruitment order, and firing pattern, etc.</p> <p>Results</p> <p>The results of the mathematical model, supported by simulation, indicate that the SNR of a single ME channel is associated with the voluntary contraction level. We showed that a model-based approach can provide insight into the key factors and bioprocess in ME control. The results of this modelling work can be potentially used in the improvement of ME control performance and for the training of amputees with powered prostheses.</p> <p>Conclusion</p> <p>The SNR of single ME channel is a force, neuronal and muscular property dependent parameter. The theoretical model provides possible guidance to enhance the SNR of ME channel by controlling physiological variables or conscious contraction level.</p

    Development of a reliable and construct valid measure of nutritional literacy in adults

    Get PDF
    BACKGROUND: Research into the relation of literacy to health status has not included measures of nutritional literacy. This may be a critical area in the study of chronic conditions such as hypertension and diabetes, which can both relate to obesity and nutrition. This paper details the development and psychometric characteristics of the Nutritional Literacy Scale (NLS), offered as a measure of adults' ability to comprehend nutritional information. METHODS: In order to assess the internal consistency and construct validity of the NLS, demographic data, readability statistics, NLS scores and scores on the Reading Comprehension Section of the Short Test of Functional Health Literacy in Adults (S-TOFHLA) were collected in a cross-sectional study of 341 patients from two primary care practices. RESULTS: The NLS score showed acceptable internal consistency of 0.84 by Cronbach's alpha coefficient. The Pearson correlation between the NLS and the S-TOFHLA was 0.61, supporting evidence for construct validity. CONCLUSION: Given the importance of proper weight and nutrition in the health of the public, as well as the absence of research on literacy skills as related to nutritional concepts, the NLS has the potential to add to the national research agenda in these areas

    Sex peptide receptor-regulated polyandry mediates the balance of pre- and post-copulatory sexual selection in Drosophila

    Get PDF
    Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophil
    • 

    corecore