76 research outputs found
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
Beauty photoproduction measured using decays into muons in dijet events in ep collisions at =318 GeV
The photoproduction of beauty quarks in events with two jets and a muon has
been measured with the ZEUS detector at HERA using an integrated luminosity of
110 pb. The fraction of jets containing b quarks was extracted from the
transverse momentum distribution of the muon relative to the closest jet.
Differential cross sections for beauty production as a function of the
transverse momentum and pseudorapidity of the muon, of the associated jet and
of , the fraction of the photon's momentum participating in
the hard process, are compared with MC models and QCD predictions made at
next-to-leading order. The latter give a good description of the data.Comment: 32 pages, 6 tables, 7 figures Table 6 and Figure 7 revised September
200
Search for a narrow charmed baryonic state decaying to D^*+/- p^-/+ in ep collisions at HERA
A resonance search has been made in the D^*+/- p^-/+ invariant-mass spectrum
with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. The
decay channels D^*+ -> D^0 pi^+_s -> (K^- pi^+) pi^+_s and D^*+ -> D^0 pi^+_s
-> (K^- pi^+ pi^+ pi^-) pi^+_s (and the corresponding antiparticle decays) were
used to identify D^*+/- mesons. No resonance structure was observed in the
D^*+/- p^-/+ mass spectrum from more than 60000 reconstructed D^*+/- mesons.
The results are not compatible with a report of the H1 Collaboration of a
charmed pentaquark, Theta^0_c.Comment: 22 pages, 7 figures, 1 table; minor text revisions; 2 references
adde
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Sequencing the genome of the Atlantic salmon (Salmo salar)
The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids
In Vivo Assessment of Cold Adaptation in Insect Larvae by Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy
Background Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. Methodology Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems–the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. Results In vivo MR images were acquired from autumn-collected larvae at temperatures between 0°C and about -70°C and at spatial resolutions down to 27 µm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. Conclusions These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo
Can large scintillators be used for solar-axion searches to test the cosmological axion-photon oscillation proposal?
Solar-axion interaction rates in NaI, CsI and Xe scintillators via the
axio-electric effect were calculated. A table is presented with photoelectric
and axioelectric cross sections, solar-axion fluxes, and the interaction rates
from 2.0 to 10.0 keV. The results imply that annual-modulation data of large
NaI and CsI arrays, and large Xe scintillation chambers, might be made
sensitive enough to probe coupling to photons at levels required to explain
axion-photon oscillation phenomena proposed to explain the survival of
high-energy photons traveling cosmological distances. The DAMAA/LIBRA data are
used to demonstrate the power of the model-independent annual modulation due to
the seasonal variation in the earth sun distance.Comment: 7 pages and no figure
Angular and Current-target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic e+ p scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation
Ethanol-induced enhancement of cocaine bioactivation and irreversible protein binding: evidence against a role of cytochrome P-450IIE1
Chronic ethanol consumption potentiates cocaine-induced liver injury in rodents. Since cocaine has to be bioactivated by a cytochrome P-450-dependent N-oxidative pathway to exert its hepatotoxic effects, we studied the role of the ethanol-inducible P-450IIE1 for cocaine metabolism. Male Sprague-Dawley rats were pretreated with either a liquid diet containing ethanol (30% of calories) for 4 weeks or injected with pyrazole (200 mg/kg/day, ip, for 3 days). Both agents induced microsomal p-nitrophenol hydroxylation which is a probe for the catalytic activity of P-450IIE1. However, only ethanol, but not pyrazole, increased both microsomal cocaine N-demethylase activity (by 47%) and the extent of irreversible binding of [3H]-cocaine to microsomal proteins (by 100%), which was taken as a quantitative endpoint for the formation of a reactive metabolite. Cocaine N-demethylation and irreversible protein binding of cocaine were not inhibited by P-450IIE1 isozyme-selective substrates, nor was the rate of cocaine metabolism and binding decreased by functionally active polyclonal anti-rat P-450IIE1 antibodies. Furthermore, pyrazole pretreatment sensitized cultured hepatocytes to the glutathione-dependent cytotoxic effects of nontoxic concentrations of cocaine. These results indicate that (a) cocaine is not a major substrate for the ethanol-inducible P-450IIE1, (b) the enhancing effects of ethanol on cocaine bioactivation may be due to induction of other P-450 isoforms, and (c) induction of P-450IIE1 may potentiate cocaine-induced hepatocellular toxicity in vitro independently of cocaine metabolism, e.g., by P-450IIE1-dependent oxidative stress
- …