263 research outputs found

    Towards a better understanding of the development of the strength in Asymmetrical Friction Connections (AFC)

    Get PDF
    In the current design practice, the strength of Asymmetric Friction Connections (AFCs) is calculated considering the friction force developed at both sliding interfaces using the bolt tension reduced by the moment – shear - axial interaction (MPV) effect. However, available models do not consider the friction induced by the bolt assembly force, termed assembly effect, or the bolt inclination effect, which is the increase in the AFC strength due to the horizontal component of the bolt tension produced when the bolt inclines. This paper proposes a model for quantifying the strength of AFCs considering the assembly, MPV, and inclination effects for the cases: i). Before the slotted plate breakaway, ii). Bolts inclining up to the angle defined by the bole hole oversize and termed bolt elastic inclination, iii) Bolts inclination angles larger than the angle defined by the bole hole oversize and produced by bolt flexural yielding and termed bolt yielding inclination. The proposed model is validated from the testing of an AFC scaled prototype, and from the quasi – static testing of 18 AFCs in real scale and assembled with Bisalloy 500 shims, and 2 M16 Grade 8.8 bolts with bolt grip lengths between 52.5mm and 172.5mm. It is shown that before breakaway the hysteresis loop is linear, and the peak strength depends only on the assembly effect. For the bolt elastic inclination, the hysteresis loop shape is bilinear, and the peak strength depends on the combined action of the assembly, MPV, and inclination effects. For the bolt yielding inclination, the hysteresis loop is square and pinched and the average strength across the plateau of the hysteresis loop depends on the MPV and inclination effects. For the three cases considered, the proposed model predicts the AFC strength with accuracies of 76% – 120%. The proposed model shows the horizontal component of the bolt tension from the bolt inclination effect was 6% - 28% of the AFC strength for the bolt elastic inclination, and 38% - 53% of the AFC strength for the bolt yielding inclination

    Shake table test a structure retrofitted using 2-4 Direction Displacement Dependent (D3) viscous dampers

    Get PDF
    Many seismic codes are modified to represent increased hazard or performance expectations of structures. According to the new code, many structures require retrofit to meet these increase performance expectations. Fluid viscous dampers can add energy dissipation without requiring major structural modification. However, their addition can lead to substantial increases in the maximum base shear and column axial forces in non-linear structures. In practice, these increases in demand would likely require strengthening of the columns and the foundations, thus increasing cost and reducing the ease and potential impact of this approach. In contrast, the 2-4 configuration of a passive Direction and Displacement Dependent (D3) damper provides damping in only quadrants 2 and 4 of the force-displacement response plot, thus substantially reducing peak base shear loads compared to a conventional viscous damper. The paper looks at the seismic performance of a 1/2 scale, two storey steel frame building that is retrofitted with the passive 2-4 D3 damper subjected to uni-directional shake table testing. Performance in mitigating structural response and foundation demand are assessed by evaluating base shear, maximum drift and acceleration. The overall results show that simultaneous reductions in displacement, base-shear and acceleration demand are only available with the 2–4 D3 viscous device. This device is entirely passive, and provides unique retrofit opportunity that does not require strengthening of the columns and the foundations

    Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>

    Get PDF
    Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling

    Genesis and development of an interfluvial peatland in the central Congo Basin since the Late Pleistocene

    Get PDF
    The central Congo Basin contains the largest known peatland complex in the tropics. Here we present a detailed multi-proxy record from a peat core, CEN-17.4, from the centre of a 45 km wide interfluvial peatland (Ekolongouma), the first record of its kind from the central Congo peatlands. We use pollen, charcoal, sedimentological and geochemical data to reconstruct the site's history from the late Pleistocene to the present day. Peat began accumulating at the centre of the peatland ∼19,600 cal BP (∼17,500–20,400 cal BP, 95% confidence interval), and between ∼9500 (9430–9535 cal BP) and 10,500 (10,310–10,660 cal BP) cal BP towards the margins. Pollen data from the peatland centre show that an initial grass- and sedge-dominated vegetation, which burned frequently, was replaced by a Manilkara-type dominated flooded forest at ∼12,640 cal BP, replaced in turn by a more mixed swamp forest at ∼9670 cal BP. Mixed swamp forest vegetation has persisted to the present day, with variations in composition and canopy openness likely caused at least in part by changes in palaeo-precipitation. Stable isotope data (δDn-C29-v&icecorr) indicate a large reduction in precipitation beginning ∼5000 and peaking ∼2000 cal BP, associated with the near-complete mineralization of several metres of previously accumulated peat and with a transition to a drier, more heliophilic swamp forest assemblage, likely with a more open canopy. Although the peatland and associated vegetation recovered from this perturbation, the strong response to this climatic event underlines the ecosystem's sensitivity to changes in precipitation. We find no conclusive evidence for anthropogenic activity in our record; charcoal is abundant only in the Pleistocene part of the record and may reflect natural rather than anthropogenic fires. We conclude that autogenic succession and variation in the amount and seasonality of precipitation have been the most important drivers of ecological change in this peatland since the late Pleistocene

    Testing the Accuracy of Aerial Surveys for Large Mammals: An Experiment with African Savanna Elephants (Loxodonta africana)

    Get PDF
    Accurate counts of animals are critical for prioritizing conservation efforts. Past research, however, suggests that observers on aerial surveys may fail to detect all individuals of the target species present in the survey area. Such errors could bias population estimates low and confound trend estimation. We used two approaches to assess the accuracy of aerial surveys for African savanna elephants (Loxodonta africana) in northern Botswana. First, we used double-observer sampling, in which two observers make observations on the same herds, to estimate detectability of elephants and determine what variables affect it. Second, we compared total counts, a complete survey of the entire study area, against sample counts, in which only a portion of the study area is sampled. Total counts are often considered a complete census, so comparing total counts against sample counts can help to determine if sample counts are underestimating elephant numbers. We estimated that observers detected only 76% ± SE of 2% of elephant herds and 87 ± 1% of individual elephants present in survey strips. Detectability increased strongly with elephant herd size. Out of the four observers used in total, one observer had a lower detection probability than the other three, and detectability was higher in the rear row of seats than the front. The habitat immediately adjacent to animals also affected detectability, with detection more likely in more open habitats. Total counts were not statistically distinguishable from sample counts. Because, however, the double-observer samples revealed that observers missed 13% of elephants, we conclude that total counts may be undercounting elephants as well. These results suggest that elephant population estimates from both sample and total counts are biased low. Because factors such as observer and habitat affected detectability of elephants, comparisons of elephant populations across time or space may be confounded. We encourage survey teams to incorporate detectability analysis in all aerial surveys for mammals

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    Polymorphisms of the prion protein gene and their effects on litter size and risk evaluation for scrapie in Chinese Hu sheep

    Get PDF
    It is well known that scrapie is a fatal, neurodegenerative disease in sheep and goat, which belongs to the group of transmissible spongiform encephalopathies (TSEs) or prion diseases. It has been confirmed that the polymorphisms of prion protein gene (PRNP) at codons 136, 154, and 171 have strong relationship with scrapie in sheep. In the present study, nine polymorphisms of PRNP at codons 136, 154, and 171 and other six loci (at codons 101, 112, 127, 137, 138, and 152) were detected in 180 Chinese Hu sheep. All the alleles at codons 136, 154, and 171 have been identified and resulted in three new genotypes. The frequencies of predominant alleles were 85% (A136), 99.40% (R154), and 37.78% (Q171), respectively. The predominant haplotype ARQ has a relatively high frequency of 57.77%. The frequencies of dominant genotypes of ARR/ARQ and ARQ/ARQ were 30 and 26.67%, respectively. Three new found genotypes named ARQ/TRK, ARQ/TRR, and TRR/TRQ had the same lower frequencies (0.56%). The relationship of PRNP genotype with scrapie risk and litter size showed that the predominant genotypes are corresponded to the risk score of R1 (1.67%), R2 (32.22%), and R3 (42.22%). Just at the first parity, the individuals with ARH/ARH genotype had significantly larger litter size than the mean value and those with ARQ/ARQ and ARR/ARQ genotypes. In short, this study provided preliminary information about alleles and genotypes of PRNP in Chinese Hu sheep. It could be concluded that Hu sheep has a low susceptibility to natural scrapie, and the predominant PRNP genotype at least has no significant effect on litter size

    Cryptic speciation and chromosomal repatterning in the South African climbing mice Dendromus (Rodentia, Nesomyidae)

    Get PDF
    We evaluate the intra- and interspecific diversity in the four South African rodent species of the genus Dendromus. The molecular phylogenetic analysis on twenty-three individuals have been conducted on a combined dataset of nuclear and mitochondrial markers. Moreover, the extent and processes underlying chromosomal variation, have been investigated on three species by mean of G-, C-bands, NORs and Zoo-FISH analysis. The molecular analysis shows the presence of six monophyletic lineages corresponding to D. mesomelas, D. mystacalis and four lineages within D. cfr. melanotis with high divergence values (ranges: 10.6% – 18.3%) that raises the question of the possible presence of cryptic species. The first description of the karyotype for D. mesomelas and D. mystacalis and C- and G- banding for one lineage of D. cfr. melanotis are reported highlighting an extended karyotype reorganization in the genus. Furthermore, the G-banding and Zoo-FISH evidenced an autosome-sex chromosome translocation characterizing all the species and our timing estimates this mutation date back 7.4 mya (Late Miocene). Finally, the molecular clock suggests that cladogenesis took place since the end of Miocene to Plio-Pleistocene, probably due to ecological factors, isolation in refugia followed by differential adaptation to the mesic or dry habitat

    Dopamine Signaling Is Essential for Precise Rates of Locomotion by C. elegans

    Get PDF
    Dopamine is an important neuromodulator in both vertebrates and invertebrates. We have found that reduced dopamine signaling can cause a distinct abnormality in the behavior of the nematode C. elegans, which has only eight dopaminergic neurons. Using an automated particle-tracking system for the analysis of C. elegans locomotion, we observed that individual wild-type animals made small adjustments to their speed to maintain constant rates of locomotion. By contrast, individual mutant animals defective in the synthesis of dopamine made larger adjustments to their speeds, resulting in large fluctuations in their rates of locomotion. Mutants defective in dopamine signaling also frequently exhibited both abnormally high and abnormally low average speeds. The ability to make small adjustments to speed was restored to these mutants by treatment with dopamine. These behaviors depended on the D2-like dopamine receptor DOP-3 and the G-protein subunit GOA-1. We suggest that C. elegans and other animals, including humans, might share mechanisms by which dopamine restricts motor activity levels and coordinates movement

    FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer

    Get PDF
    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly associated with FOXA1 methylation and downregulation of FOXA1 expression, providing physiological evidence to our findings that FOXA1 expression is regulated by methylation and chromatin silencing and that BRCA1 maintains FOXA1 expression through suppressing FOXA1 gene methylation in breast cancer.Oncogene advance online publication, 22 December 2014; doi:10.1038/onc.2014.421.published_or_final_versio
    corecore