10 research outputs found

    A Multifaceted Analysis of Immune-Endocrine-Metabolic Alterations in Patients with Pulmonary Tuberculosis

    Get PDF
    Our study investigated the circulating levels of factors involved in immune-inflammatory-endocrine-metabolic responses in patients with tuberculosis with the aim of uncovering a relation between certain immune and hormonal patterns, their clinical status and in vitro immune response. The concentration of leptin, adiponectin, IL-6, IL-1β, ghrelin, C-reactive protein (CRP), cortisol and dehydroepiandrosterone (DHEA), and the in vitro immune response (lymphoproliferation and IFN-γ production) was evaluated in 53 patients with active untreated tuberculosis, 27 household contacts and 25 healthy controls, without significant age- or sex-related differences. Patients had a lower body mass index (BMI), reduced levels of leptin and DHEA, and increased concentrations of CRP, IL-6, cortisol, IL-1β and nearly significant adiponectin values than household contacts and controls. Within tuberculosis patients the BMI and leptin levels were positively correlated and decreased with increasing disease severity, whereas higher concentrations of IL-6, CRP, IL-1β, cortisol, and ghrelin were seen in cases with moderate to severe tuberculosis. Household contacts had lower DHEA and higher IL-6 levels than controls. Group classification by means of discriminant analysis and the k-nearest neighbor method showed that tuberculosis patients were clearly different from the other groups, having higher levels of CRP and lower DHEA concentration and BMI. Furthermore, plasma leptin levels were positively associated with the basal in vitro IFN-γ production and the ConA-driven proliferation of cells from tuberculosis patients. Present alterations in the communication between the neuro-endocrine and immune systems in tuberculosis may contribute to disease worsening

    2-OHOA supplementation reduced adiposity and improved cardiometabolic risk to a greater extent than n-3 PUFA in obese mice

    No full text
    Objective: We aimed to assess whether 2-hydroxyoleic acid (2-OHOA) and n-3 polyunsaturated fatty acids (PUFA) could counteract changes on adipokine secretion and cardiometabolic risk biomarkers associated with high-fat diet-induced obesity in mice. Methods: Female ICR/CD1 mice (8 weeks old) were divided into four groups receiving different diets (n=8/group): 1) standard chow (control) for 18 weeks; 2) 22% fat for 4 weeks + 60% fat for 14 weeks (obesogenic diet, OD); 3) OD + 2-OHOA (1500 mg·kg−1 diet) for the last 6 weeks (OD-HO); and 4) OD + n-3 PUFA (eicosapentaenoic +docosahexaenoic acids, 1500+1500 mg·kg−1 diet) for the last 6 weeks (OD-N3). After 18 weeks, body weight, periovarian visceral fat, heart and liver weights were measured, as well as cardiometabolic parameters (systolic and diastolic blood pressure, blood glucose, insulin, HOMA index, triglycerides, total cholesterol, apolipoproteins A1 and E), plasma adipokines and inflammatory proteins (leptin, adiponectin, plasminogen activator inhibitor 1 [PAI1], soluble E-selectin [sE-selectin], matrix metalloproteinase-9 [MMP-9], fibrinogen, soluble intercellular adhesion molecule [sICAM] and soluble vascular adhesion molecule [sVCAM]), and secretion of pro-inflamatory cytokines and inflammatory biomarkers from periovarian adipocytes. Results: OD mice had greater body and heart weights, and plasma leptin, and lower adiponectin and resistin secretion from adipocytes. Supplementation with 2-OHOA reduced body and heart weights, blood pressure, triglycerides and leptin, and restored adiponectin and resistin secretion, while n-3 PUFA only reduced triglyceride levels (all P<0.05). Conclusion: 2-OHOA supplementation was more effective in reducing adiposity,modulating adipokine secretion and ameliorating cardiometabolic risk than n-3 PUFA
    corecore