71 research outputs found

    Editorial: Quaternary revolutions

    Get PDF
    PublishedEditorialJournalEditorialThe QRA@50 meeting was organized by a team of people including the editors, John Catt, Catherine Souch, Tom Hill, Danni Pearce and a team of postgraduates and staff from the Royal Geographical Society-Institute of British Geographers (RGS-IBG). It was made possible by support from a number of sponsors, including RGS-IBG, van Walt, Beta Analytic Ltd, the Natural History Museum, Wiley-Blackwell and C3W (Climate Change Consortium of Wales). We would like to thank the reviewers of all the papers for their comments and suggested improvements to the papers

    New age constraints for the limit of the British–Irish Ice Sheet on the Isles of Scilly

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.The southernmost terrestrial extent of the Irish Sea Ice Stream (ISIS), which drained a large proportion of the last British–Irish Ice Sheet, impinged on to the Isles of Scilly during Marine Isotope Stage 2. However, the age of this ice limit has been contested and the interpretation that this occurred during the Last Glacial Maximum (LGM) remains controversial. This study reports new ages using optically stimulated luminescence (OSL) dating of outwash sediments at Battery, Tresco (25.5 ± 1.5 ka), and terrestrial cosmogenic nuclide exposure dating of boulders overlying till on Scilly Rock (25.9 ± 1.6 ka), which confirm that the ISIS reached the Isles of Scilly during the LGM. The ages demonstrate this ice advance on to the northern Isles of Scilly occurred at ∼26 ka around the time of increased ice-rafted debris in the adjacent marine record from the continental margin, which coincided with Heinrich Event 2 at ∼24 ka. OSL dating (19.6 ± 1.5 ka) of the post-glacial Hell Bay Gravel at Battery suggests there was then an ∼5-ka delay between primary deposition and aeolian reworking of the glacigenic sediment, during a time when the ISIS ice front was oscillating on and around the Llŷn Peninsula, ∼390 km to the north.This paper was supported by a Natural Environment Research Council consortium grant (BRITICE-CHRONO NE/J008672/1). H. Wynne is thanked for etching the quartz grains for OSL dating. A. Palmer and S. Carr are also acknowledged for preparing the thin sections and running the tomograph analyses, respectively. Thanks to the Tresco Estate for allowing us access to the Battery and Gunhill sites and facilitating sampling there, to Dave Mawer and Julie Love of the IOS Wildlife Trust for facilitating access to Shipman Head and Scilly Rock, and for supplying the photograph (Fig. 4b). We would like to thank Jeremy Phillips of the St Mary's Boatmen's Association for logistical support

    Muscle damage response in female collegiate athletes following repeated sprint activity

    Get PDF
    Exercise induced muscle damage (EIMD) is a well-investigated area, however there is a paucity of data surrounding the damage response in females. The aim of this study was to examine the damage responses from a sport-specific bout of repeated sprints in female athletes. Eleven well-trained females (mean ± SD; age 22 ± 3 y, height 166.6 ± 5.7 cm, mass 62.7 ± 4.5 kg) in the luteal phase of the menstrual cycle completed a repeated sprint protocol designed to induce EIMD (15 × 30 m sprints). Creatine kinase (CK), countermovement jump height (CMJ), knee extensor maximum voluntary contraction force (MVIC), muscle soreness (DOMS), 30 m sprint time and limb girth were recorded pre, post, 24 h, 48 h and 72 h post exercise. CK was elevated at 24, 48 and 72 h (p < 0.05), peaking at 24 h (+418%) and returning towards baseline at 72 h. CMJ height was reduced immediately post, 24 and 48 h (p < 0.05). Sprint performance was also negatively affected immediately post, 24 h, 48 h and 72 h post exercise. Muscle soreness peaked at 48 h (p<0.01) and remained significantly elevated at 72 h post exercise (p<0.01). Limb girth and MVIC did not alter over time. The current study provides new information on the EIMD response in trained females following a sport specific bout of repeated sprints. Importantly, this damage response has the potential to negatively affect performance for several days post-exercise

    Luminescence Dating in Fluvial Settings: Overcoming the Challenge of Partial Bleaching

    Get PDF
    Optically stimulated luminescence (OSL) dating is a versatile technique that utilises the two most ubiquitous minerals on Earth (quartz or K-feldspar) for constraining the timing of sediment deposition. It has provided accurate ages in agreement with independent age control in many fluvial settings, but is often characterised by partial bleaching of individual grains. Partial bleaching can occur where sunlight exposure is limited and so only a portion of the grains in the sample was exposed to sunlight prior to burial, especially in sediment-laden, turbulent or deep water columns. OSL analysis on multiple grains can provide accurate ages for partially bleached sediments where the OSL signal intensity is dominated by a single brighter grain, but will overestimate the age where the OSL signal intensity is equally as bright (often typical of K-feldspar) or as dim (sometimes typical of quartz). In such settings, it is important to identify partial bleaching and the minimum dose population, preferably by analysing single grains, and applying the appropriate statistical age model to the dose population obtained for each sample. To determine accurate OSL ages using these age models, it is important to quantify the amount of scatter (or overdispersion) in the well-bleached part of the partially bleached dose distribution, which can vary between sediment samples depending upon the bedrock sources and transport histories of grains. Here, we discuss how the effects of partial bleaching can be easily identified and overcome to determine accurate ages. This discussion will therefore focus entirely on the burial dose determination for OSL dating, rather than the dose-rate, as only the burial doses are impacted by the effects of partial bleaching

    Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction

    Get PDF
    The BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British?Irish Ice Sheet between 31?000 and 15?000?years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500?days of field investigation yielding 18?000?km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8?m sea level equivalent occurred at 23?ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22?ka. The tipping point of deglaciation at 22?ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British?Irish Ice Sheet is now the world?s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling

    Optically stimulated luminescence dating as a geochronological tool for late quaternary sediments in the Red Sea region

    Get PDF
    This chapter concerns the use of luminescence methods as geochronological tools for dating Late Quaternary sediments in the Red Sea region. The dating methods all use stimulated luminescence to register signals developed in mineral systems in response to long term exposure to ionising radiation in the environment. The principles of luminescence dating are outlined followed by discussion of its application to the Arabian Peninsula, where, particularly in SE Arabia and parts of the interior, a growing corpus of work is emerging, which is helping to define past arid or humid periods of importance to palaeoclimatology and to archaeology. Turning to the Red Sea, studies conducted within the DISPERSE project are presented both in marine and terrestrial settings. The motivation for much of this work concerns definition of the environmental conditions and chronologies for hominin and human dispersion through Arabia. Data are presented which identify, for the first time, late Pleistocene evidence on the inner continental shelf near the Farasan Islands, using material from the 2013 cruise of RV AEGAEO . Results are also presented from the littoral fringe of southwest Saudi Arabia, identifying units associated with MIS5 which have palaeo-environmental and archaeological significance. It is to be hoped that further research in coming decades will continue to extend the regional chronology for the littoral fringe of the Red Sea. In this respect luminescence dating has potential to help define the environmental history of this important area, to assist with assigning marine and terrestrial features into unique stages of Quaternary climate cycles, and to promote better understanding of human-environment interactions in this dynamic area

    Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia

    No full text
    Ground penetrating radar (GPR) profiles across a complex linear dune in the Namib Sand Sea have been used to image sets of cross-stratification and their bounding surfaces. A combination of radar facies analysis and radar stratigraphy has been used to interpret the radar profiles and define a relative chronology. Thick sets of cross-stratification indicate when the dune was most active, whereas thin sets of cross-stratification are interpreted to indicate the increased prevalence of wind reversals and lower rates of dune migration, with bounding surfaces formed during periods of stabilization, non-deposition or erosion. A drilling and dating campaign was designed on the basis of the dune stratigraphy as defined by the GPR survey. Sampling was targeted at large sets of cross-stratification formed when the dunes were most active, and avoiding bounding surfaces formed when the dune was stable or even eroded. The results from optical dating give ages between 0.34 ± 0.02 ka and 1.57 ± 0.07 ka, indicating a time-averaged dune migration rate of 0.12 m a−1 over the past 1600 years
    • …
    corecore