1,275 research outputs found

    The Computational Complexity of the Game of Set and its Theoretical Applications

    Full text link
    The game of SET is a popular card game in which the objective is to form Sets using cards from a special deck. In this paper we study single- and multi-round variations of this game from the computational complexity point of view and establish interesting connections with other classical computational problems. Specifically, we first show that a natural generalization of the problem of finding a single Set, parameterized by the size of the sought Set is W-hard; our reduction applies also to a natural parameterization of Perfect Multi-Dimensional Matching, a result which may be of independent interest. Second, we observe that a version of the game where one seeks to find the largest possible number of disjoint Sets from a given set of cards is a special case of 3-Set Packing; we establish that this restriction remains NP-complete. Similarly, the version where one seeks to find the smallest number of disjoint Sets that overlap all possible Sets is shown to be NP-complete, through a close connection to the Independent Edge Dominating Set problem. Finally, we study a 2-player version of the game, for which we show a close connection to Arc Kayles, as well as fixed-parameter tractability when parameterized by the number of rounds played

    On the complexity of the multiple stack TSP, kSTSP

    Full text link
    The multiple Stack Travelling Salesman Problem, STSP, deals with the collect and the deliverance of n commodities in two distinct cities. The two cities are represented by means of two edge-valued graphs (G1,d2) and (G2,d2). During the pick-up tour, the commodities are stored into a container whose rows are subject to LIFO constraints. As a generalisation of standard TSP, the problem obviously is NP-hard; nevertheless, one could wonder about what combinatorial structure of STSP does the most impact its complexity: the arrangement of the commodities into the container, or the tours themselves? The answer is not clear. First, given a pair (T1,T2) of pick-up and delivery tours, it is polynomial to decide whether these tours are or not compatible. Second, for a given arrangement of the commodities into the k rows of the container, the optimum pick-up and delivery tours w.r.t. this arrangement can be computed within a time that is polynomial in n, but exponential in k. Finally, we provide instances on which a tour that is optimum for one of three distances d1, d2 or d1+d2 lead to solutions of STSP that are arbitrarily far to the optimum STSP

    Fast algorithms for min independent dominating set

    Full text link
    We first devise a branching algorithm that computes a minimum independent dominating set on any graph with running time O*(2^0.424n) and polynomial space. This improves the O*(2^0.441n) result by (S. Gaspers and M. Liedloff, A branch-and-reduce algorithm for finding a minimum independent dominating set in graphs, Proc. WG'06). We then show that, for every r>3, it is possible to compute an r-((r-1)/r)log_2(r)-approximate solution for min independent dominating set within time O*(2^(nlog_2(r)/r))

    On Approximating Restricted Cycle Covers

    Get PDF
    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to settling the complexity and approximability of computing L-cycle covers. On the one hand, we show that for almost all L, computing L-cycle covers of maximum weight in directed and undirected graphs is APX-hard and NP-hard. Most of our hardness results hold even if the edge weights are restricted to zero and one. On the other hand, we show that the problem of computing L-cycle covers of maximum weight can be approximated within a factor of 2 for undirected graphs and within a factor of 8/3 in the case of directed graphs. This holds for arbitrary sets L.Comment: To appear in SIAM Journal on Computing. Minor change

    Improved Approximation Algorithms for Computing k Disjoint Paths Subject to Two Constraints

    Full text link
    For a given graph GG with positive integral cost and delay on edges, distinct vertices ss and tt, cost bound CZ+C\in Z^{+} and delay bound DZ+D\in Z^{+}, the kk bi-constraint path (kkBCP) problem is to compute kk disjoint stst-paths subject to CC and DD. This problem is known NP-hard, even when k=1k=1 \cite{garey1979computers}. This paper first gives a simple approximation algorithm with factor-(2,2)(2,2), i.e. the algorithm computes a solution with delay and cost bounded by 2D2*D and 2C2*C respectively. Later, a novel improved approximation algorithm with ratio (1+β,max{2,1+ln1β})(1+\beta,\,\max\{2,\,1+\ln\frac{1}{\beta}\}) is developed by constructing interesting auxiliary graphs and employing the cycle cancellation method. As a consequence, we can obtain a factor-(1.369,2)(1.369,\,2) approximation algorithm by setting 1+ln1β=21+\ln\frac{1}{\beta}=2 and a factor-(1.567,1.567)(1.567,\,1.567) algorithm by setting 1+β=1+ln1β1+\beta=1+\ln\frac{1}{\beta}. Besides, by setting β=0\beta=0, an approximation algorithm with ratio (1,O(lnn))(1,\, O(\ln n)), i.e. an algorithm with only a single factor ratio O(lnn)O(\ln n) on cost, can be immediately obtained. To the best of our knowledge, this is the first non-trivial approximation algorithm for the kkBCP problem that strictly obeys the delay constraint.Comment: 12 page

    The zero exemplar distance problem

    Full text link
    Given two genomes with duplicate genes, \textsc{Zero Exemplar Distance} is the problem of deciding whether the two genomes can be reduced to the same genome without duplicate genes by deleting all but one copy of each gene in each genome. Blin, Fertin, Sikora, and Vialette recently proved that \textsc{Zero Exemplar Distance} for monochromosomal genomes is NP-hard even if each gene appears at most two times in each genome, thereby settling an important open question on genome rearrangement in the exemplar model. In this paper, we give a very simple alternative proof of this result. We also study the problem \textsc{Zero Exemplar Distance} for multichromosomal genomes without gene order, and prove the analogous result that it is also NP-hard even if each gene appears at most two times in each genome. For the positive direction, we show that both variants of \textsc{Zero Exemplar Distance} admit polynomial-time algorithms if each gene appears exactly once in one genome and at least once in the other genome. In addition, we present a polynomial-time algorithm for the related problem \textsc{Exemplar Longest Common Subsequence} in the special case that each mandatory symbol appears exactly once in one input sequence and at least once in the other input sequence. This answers an open question of Bonizzoni et al. We also show that \textsc{Zero Exemplar Distance} for multichromosomal genomes without gene order is fixed-parameter tractable if the parameter is the maximum number of chromosomes in each genome.Comment: Strengthened and reorganize

    XML Reconstruction View Selection in XML Databases: Complexity Analysis and Approximation Scheme

    Full text link
    Query evaluation in an XML database requires reconstructing XML subtrees rooted at nodes found by an XML query. Since XML subtree reconstruction can be expensive, one approach to improve query response time is to use reconstruction views - materialized XML subtrees of an XML document, whose nodes are frequently accessed by XML queries. For this approach to be efficient, the principal requirement is a framework for view selection. In this work, we are the first to formalize and study the problem of XML reconstruction view selection. The input is a tree TT, in which every node ii has a size cic_i and profit pip_i, and the size limitation CC. The target is to find a subset of subtrees rooted at nodes i1,,iki_1,\cdots, i_k respectively such that ci1++cikCc_{i_1}+\cdots +c_{i_k}\le C, and pi1++pikp_{i_1}+\cdots +p_{i_k} is maximal. Furthermore, there is no overlap between any two subtrees selected in the solution. We prove that this problem is NP-hard and present a fully polynomial-time approximation scheme (FPTAS) as a solution

    On the NP-Hardness of Approximating Ordering Constraint Satisfaction Problems

    Full text link
    We show improved NP-hardness of approximating Ordering Constraint Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Betweenness, we prove inapproximability of 14/15+ϵ14/15+\epsilon and 1/2+ϵ1/2+\epsilon. An OCSP is said to be approximation resistant if it is hard to approximate better than taking a uniformly random ordering. We prove that the Maximum Non-Betweenness Problem is approximation resistant and that there are width-mm approximation-resistant OCSPs accepting only a fraction 1/(m/2)!1 / (m/2)! of assignments. These results provide the first examples of approximation-resistant OCSPs subject only to P \neq \NP

    Approximating the minimum directed tree cover

    Full text link
    Given a directed graph GG with non negative cost on the arcs, a directed tree cover of GG is a rooted directed tree such that either head or tail (or both of them) of every arc in GG is touched by TT. The minimum directed tree cover problem (DTCP) is to find a directed tree cover of minimum cost. The problem is known to be NPNP-hard. In this paper, we show that the weighted Set Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to approximate DTCP with the same ratio as for SCP. We show that this expectation can be satisfied in some way by designing a purely combinatorial approximation algorithm for the DTCP and proving that the approximation ratio of the algorithm is max{2,ln(D+)}\max\{2, \ln(D^+)\} with D+D^+ is the maximum outgoing degree of the nodes in GG.Comment: 13 page

    Resource Allocation for Multiple Concurrent In-Network Stream-Processing Applications

    Get PDF
    This paper investigates the operator mapping problem for in-network stream-processing applications. In-network stream-processing amounts to applying one or more trees of operators in steady-state, to multiple data objects that are continuously updated at different locations in the network. The goal is to compute some final data at some desired rate. Different operator trees may share common subtrees. Therefore, it may be possible to reuse some intermediate results in different application trees. The first contribution of this work is to provide complexity results for different instances of the basic problem, as well as integer linear program formulations of various problem instances. The second second contribution is the design of several polynomial-time heuristics. One of the primary objectives of these heuristics is to reuse intermediate results shared by multiple applications. Our quantitative comparisons of these heuristics in simulation demonstrates the importance of choosing appropriate processors for operator mapping. It also allow us to identify a heuristic that achieves good results in practice
    corecore