73,518 research outputs found

    Thin-thick coexistence behavior of 8CB liquid crystalline films on silicon

    Full text link
    The wetting behavior of thin films of 4'-n-octyl-4-cyanobiphenyl (8CB) on Si is investigated via optical and x-ray reflectivity measurement. An experimental phase diagram is obtained showing a broad thick-thin coexistence region spanning the bulk isotropic-to-nematic (TINT_{IN}) and the nematic-to-smectic-A (TNAT_{NA}) temperatures. For Si surfaces with coverages between 47 and 72±372\pm3 nm, reentrant wetting behavior is observed twice as we increase the temperature, with separate coexistence behaviors near TINT_{IN} and TNAT_{NA}. For coverages less than 47 nm, however, the two coexistence behaviors merge into a single coexistence region. The observed thin-thick coexistence near the second-order NA transition is not anticipated by any previous theory or experiment. Nevertheless, the behavior of the thin and thick phases within the coexistence regions is consistent with this being an equilibrium phenomenon.Comment: 4 pages, 3 figure

    Numerical Study of a Lyapunov Functional for the Complex Ginzburg-Landau Equation

    Get PDF
    We numerically study in the one-dimensional case the validity of the functional calculated by Graham and coworkers as a Lyapunov potential for the Complex Ginzburg-Landau equation. In non-chaotic regions of parameter space the functional decreases monotonically in time towards the plane wave attractors, as expected for a Lyapunov functional, provided that no phase singularities are encountered. In the phase turbulence region the potential relaxes towards a value characteristic of the phase turbulent attractor, and the dynamics there approximately preserves a constant value. There are however very small but systematic deviations from the theoretical predictions, that increase when going deeper in the phase turbulence region. In more disordered chaotic regimes characterized by the presence of phase singularities the functional is ill-defined and then not a correct Lyapunov potential.Comment: 20 pages,LaTeX, Postcript version with figures included available at http://formentor.uib.es/~montagne/textos/nep

    Application of computer-aided dispatch in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for the application of computer-aided dispatching (CAD) to law enforcement is presented. Some essential characteristics and applications of CAD are outlined; the results of a survey of systems in the operational or planning phases are summarized. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Detailed descriptions of typical law enforcement CAD systems, and a list of vendor sources, are given in appendixes

    Synchronization of Spatiotemporal Chaos: The regime of coupled Spatiotemporal Intermittency

    Get PDF
    Synchronization of spatiotemporally chaotic extended systems is considered in the context of coupled one-dimensional Complex Ginzburg-Landau equations (CGLE). A regime of coupled spatiotemporal intermittency (STI) is identified and described in terms of the space-time synchronized chaotic motion of localized structures. A quantitative measure of synchronization as a function of coupling parameter is given through distribution functions and information measures. The coupled STI regime is shown to dissapear into regular dynamics for situations of strong coupling, hence a description in terms of a single CGLE is not appropiate.Comment: 4 pages, LaTeX 2e. Includes 3 figures made up of 8, 4 (LARGE),and 2 postscript files. Includes balanced.st

    The ages of very cool hydrogen-rich white dwarfs

    Get PDF
    The evolution of white dwarfs is essentially a cooling process that depends primarily on the energy stored in their degenerate cores and on the transparency of their envelopes. In this paper we compute accurate cooling sequences for carbon-oxygen white dwarfs with hydrogen dominated atmospheres for the full range of masses of interest. For this purpose we use the most accurate available physical inputs for both the equation of state and opacities of the envelope and for the thermodynamic quantities of the degenerate core. We also investigate the role of the latent heat in the computed cooling sequences. We present separately cooling sequences in which the effects of phase separation of the carbon-oxygen binary mixture upon crystallization have been neglected, and the delay introduced in the cooling times when this mechanism is properly taken into account, in order to compare our results with other published cooling sequences which do not include a treatment of this phenomenon. We find that the cooling ages of very cool white dwarfs with pure hydrogen atmospheres have been systematically underestimated by roughly 1.5 Gyr at log(L/Lo)=-4.5 for an otherwise typical 0.6 Mo white dwarf, when phase separation is neglected. If phase separation of the binary mixture is included then the cooling ages are further increased by roughly 10%. Cooling tracks and cooling isochrones in several color-magnitude diagrams are presented as well.Comment: 8 Pages; ApJ, accepted for publicatio
    corecore